- •А.Н. Игнатов
- •Новосибирск 2013
- •Предисловие
- •1.1 Введение в волоконную оптику
- •1.2 Особенности оптической электроники
- •1.3 История развития оптоэлектроники
- •1.4 Современное состояние оптоэлектронной элементной базы
- •1.5 Система обозначений оптоэлектронных приборов индикации
- •1.6 Система обозначений полупроводниковых приборов и оптронов
- •Тестовые вопросы к главе 1 «Введение в оптоэлектронику»
- •2 Физические основы оптоэлектроники
- •2.1 Различие между фотометрическими и энергетическими характеристиками
- •2.2 Фотометрические характеристики оптического излучения
- •2.2.1 Функция видности и ее зависимость от длины электромагнитной волны
- •2.2.2 Телесный угол, световой поток и механический эквивалент света
- •2.2.3 Сила света, IV
- •2.2.4 Освещенность поверхности, е
- •2.2.5 Закон освещенности
- •2.2.6 Светимость излучающей поверхности, м
- •2.2.7 Яркость светящейся поверхности, l
- •Величина
- •2.2.8 Закон Ламберта
- •2.2.9 Световая экспозиция, нv
- •2.5 Колориметрические параметры
- •2.6 Когерентность оптического излучения
- •2.6.1 Монохроматическая электромагнитная волна (мэв)
- •2.6.2 Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах
- •2.7 Квантовые переходы и вероятности излучательных переходов
- •2.7.1 Энергетические уровни и квантовые переходы
- •2.7.2 Спонтанные переходы
- •2.7.3 Вынужденные переходы
- •2.7.4 Соотношения между коэффициентами Эйнштейна
- •2.7.5 Релаксационные переходы
- •2.8 Ширина спектральной линии
- •2.9 Использование вынужденных переходов для усиления электромагнитного поля
- •2.10 Механизм генерации излучения в полупроводниках
- •2.11 Прямозонные и непрямозонные полупроводники
- •2.12 Внешний квантовый выход и потери излучения
- •2.13 Излучатели на основе гетероструктур
- •2.14 Поглощение света в твердых телах
- •2.15 Типы переходов и характеристики излучающих полупроводниковых структур.
- •2.16 Параметры оптического излучения
- •Тестовые вопросы к главе 2 «Физические основы оптоэлектроники»
- •3 Приборы некогерентного излучения
- •3.1 Источники света
- •3.1.1 Разновидности источников
- •3.2 Основные характеристики и параметры светодиодов
- •3.2.1 Параметры светодиодов
- •3.2.2 Характеристики светодиодов
- •3.2.3 Определение и оценка параметров светодиодов
- •3.2.4 Схемы возбуждения, обеспечивающие высокую световую эффективность светодиодов
- •3.2.5 Влияние температуры
- •3.2.6 Срок службы
- •3.2.7 Ограничение тока
- •3.2.8 Достоинства твердотельных излучателей
- •3.3 Конструкции светодиодов
- •3.4 Основные схемы возбуждения светодиодов
- •3.5 Выбор типа светодиода
- •3.5.1 Основные соображения для выбора типа светодиода
- •3.5.2 Памятка разработчику
- •3.6 Электрическая модель светодиода
- •3.7 Светодиоды инфракрасного излучения
- •3.8 Светодиодные источники повышенной яркости и белого света
- •Тестовые вопросы к главе 3 «Источники некогерентного излучения»
- •4 Приборы когерентного излучения
- •4.1 Физические основы усиления и генерации лазерного излучения
- •4.2 Структурная схема лазера
- •4.3 Лазеры на основе кристаллических диэлектриков
- •4.4 Жидкостные лазеры
- •4.5 Газовые лазеры
- •4.6 Устройство и принцип действия полупроводникового инжекционного моно лазера
- •4.7 Устройство и принцип действия полупроводниковых лазеров с гетероструктурами
- •4.8 Волоконно-оптические усилители и лазеры
- •4.8.1 Волоконные усилители
- •4.8.2 Волоконные лазеры
- •4.8.3 Волоконные лазеры на основе вынужденного комбинационного рассеяния
- •4.9 Светоизлучающие диоды для волоконно-оптических систем
- •4.10 Сравнительная характеристика лазеров и светодиодов
- •4.10.1 Параметры отечественных полупроводниковых лазеров и оптических модулей
- •4.11. Квантовые эффекты в полупроводниках
- •4.12. Фотонные нанокристаллы.
- •4.13. Наноэлектронные лазеры
- •4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
- •4.13.2. Наноэлектронные лазеры с вертикальными резонаторами
- •4.14.1. Органические светодиоды
- •4.14.2. Пассивно-матричные oled
- •4.14.3. Активно-матричные oled
- •4.14.4. Технологии получения органических светодиодов
- •Тестовые вопросы к главе 4 «Приборы когерентного излучения»
- •5 Полупроводниковые фотоприемные приборы
- •5.1 Принцип работы фотоприемных приборов
- •5.2 Характеристики, параметры и модели фотоприемников
- •5.2.1 Параметры фотоприемников
- •5.2.2 Характеристики фотоприемников
- •5.2.3 Параметры фотоприемника как элемента оптопары
- •5.2.4 Электрические модели фотоприемников
- •5.3 Фотодиоды на основе p-n – перехода
- •5.4 Фотодиоды с p–I–n структурой
- •5.5 Фотодиоды Шоттки
- •5.6 Фотодиоды с гетероструктурой
- •5.7 Лавинные фотодиоды
- •5.8 Фототранзисторы
- •5.9 Фототиристоры
- •5.10 Фоторезисторы
- •5.11 Основные характеристики и параметры фоторезистора
- •5.12 Пзс приемные фотоприборы
- •5.13 Фотодиодные сбис на основе моп – транзисторов
- •5.14 Пиротехнические фотоприемники
- •5.15. Фотоприемные наноэлектронные приборы
- •5.15.1. Фотоприемники на квантовых ямах
- •5.15.2. Фотоприемники на основе квантовых точек
- •Тестовые вопросы к главе 5 «Полупроводниковые фотоприемные Приборы»
- •6 Оптроны
- •6.1 Устройство и принцип действия оптронов
- •6.2 Структурная схема оптрона
- •6.3 Классификация и параметры оптронов
- •6.4 Электрическая модель оптрона
- •6.5 Резисторные оптопары
- •6.6 Диодные оптопары
- •6.7 Транзисторные оптопары
- •6.8 Тиристорные оптопары
- •Тестовые вопросы к главе 6 «Оптроны»
- •7 Индикаторные приборы
- •7.1 Жидкокристаллические индикаторы
- •7.1.1 Основы теории
- •7.1.2 Ячейки на основе эффекта динамического рассеяния (др – ячейки)
- •7.1.3 Ячейки на основе твист-эффекта
- •7.1.4 Основные типы и параметры
- •7.1.5 Схемы включения жидкокристаллических индикаторов
- •7.1.6 Схемы управления многоразрядными индикаторами
- •7.2 Электролюминесцентные индикаторы
- •7.2.1 Устройство и принцип действия
- •7.2.2 Типы и параметры
- •7.2.3 Схемы включения электролюминесцентных индикаторов
- •7.3 Плазменные панели и устройства на их основе
- •7.4 Электрохромные индикаторы
- •7.5. Отображение информации индикаторными приборами
- •Тестовые вопросы к главе 7 «Индикаторные приборы»
- •8 Применение оптоэлектроннх приборов
- •8.1 Устройство и принцип действия оптоэлектронных генераторов
- •8.1.1 Блокинг - генератор
- •8.1.2 Генератор линейно изменяющегося напряжения
- •8.1.3 Генератор с мостом Вина
- •8.2 Применение оптоэлектронных приборов в аналоговых ключах и регуляторах
- •8.3 Применение оптронов для выполнения логических функций
- •8.4 Применение оптронов как аналогов электрорадиокомпонентов
- •8.5 Устройство и принцип действия оптоэлектронных усилителей
- •8.6 Устройство и принцип действия оптоэлектронных цифровых ключей
- •8.7 Применение оптоэлектронных приборов для измерения высоких напряжений и управления устройствами большой мощности
- •8.8 Устройство и принцип действия оптических устройств записи информации
- •8.9 Принцип лазерно-оптического считывания информации
- •8.10 Принципы цифровой оптической записи и воспроизведения информации с компакт дисков
- •8.10.1 Устройство компакт-диска
- •8.10.2 Запись на компакт диски
- •8.10.3 Отличия cd-r/cd-rw дисков от штампованных
- •8.10.4 Маркировка дисков
- •8.10.5 Надежность дисков cd-r/rw в сравнении со штампованными
- •8.10.6 Изготовление и тиражирование компакт-дисков
- •8.10.7 Воспроизведение компакт-диска
- •8.10.8 Устройство накопителей на cd-rom
- •8.10.9 Представление и параметры звукового сигнала на cd
- •8.10.10 Джиттер
- •8.11 Оптоэлектронные сенсорные системы взаимодействия человека с электронной техникой.
- •8.11 Лазерный микропроектор со спиральной разверткой для мобильных устройств
- •Тестовые вопросы к главе 8 «Применение оптоэлектронных приборов»
- •9. Волоконно-оптические системы связи
- •9.1. Общие сведения
- •9.2. Классификация волоконно-оптических систем распределения
- •9.3. Волоконно-оптические системы распределения
- •9.4. Оптические передатчики
- •9.5 Приемники волоконно-оптических систем связи
- •9.5.1 Приемные оптоэлектронные модули
- •9.6. Цифровые волоконно-оптические системы связи
- •9.7. Аналоговые волоконно-оптические системы связи
- •9.8 Умные соединители на основе смартлинков
- •9.8.1 Технические решения смартлинков
- •9.8.2 Самоформирующиеся компьютеры
- •9.8.3 Оптоволоконные нейроинтерфейсы
- •9.9 Волоконно оптические технологии для сетей доступа
- •9.9.1 Общие сведения
- •9.9.2 Тенденции мирового развития сетей доступа
- •9.9.3 Технологии оптических сетей доступа
- •9.9.4 Категории оптических сетей доступа
- •9.9.5 Волокно до бизнеса – FttBusiness
- •9.9.6 Волокно до дома – ftth
- •9.9.7 Волокно до многоквартирного дома – fттb
- •9.9.8 Волокно до сельского района
- •9.10 Медиоконверторы и их применение в оптических системах связи
- •9.10.1 Общие сведения
- •9.10.2. Основные технические требования, предъявляемые к оборудованию
- •9.10.3. Классификация медиаконвертеров по критерию управляемости
- •9.10.4. Конструктивное исполнение
- •9.10.5. Основные параметры медиаконвертеров
- •9.10.6. Система управления
- •9.10.7. Устройство и применение медиоконвертора rs-485
- •Тестовые вопросы к главе 9 «Волоконно-оптические системы связи»
- •Приложение п1
- •Приложение п2
- •Приложение п3
- •Приложение п4 Перечень принятых сокращений
- •Список цитированной литературы
4.4 Жидкостные лазеры
Интерес к жидкостным лазерам обусловлен: легкостью получения активной среды, возможностью прокачки жидкости и обусловленную этим легкость создания системы охлаждения, возможностью плавной перестройки частоты и т. п. Разновидности и параметры жидкостных лазеров иллюстрирует рис. 4.6.
Рис. 4.6. Разновидности и параметры жидкокристаллических лазеров
Широкое применение имеют лазеры на органических красителях (Dye - Lasers). Различные красители допускают перестройку длины волны генерации в диапазоне нескольких десятков нанометров при высокой монохроматичности, достигающего 1 МГц. Лазеры на органических красителях в непрерывном, импульсном и импульсно – периодическом режимах. Энергия одного импульса может достигать сотен джоулей, а мощность непрерывной генерации десятков Ватт при КПД в несколько десятков % при лазерной накачке. В режиме синхронизации мод могут быть получены лазерные импульсы длительностью десятых долей пикосекунды. Устройство жидкостного лазера иллюстрировано на рис. 4.7.
Активным веществом лазеров на красителях служат растворы молекул органических красителей в органических растворителях, или в воде. Красителями являются сложные органические соединения с разветвленной системой сопряженных химических связей. Эти соединения обладают выраженной окраской, что вызвано наличием сильных полос поглощения в видимой области спектра. Структура молекулы красителя сложна. Она содержит бензольные (С6Н6), передоновые (С6Н5N), азотные (С4Н4N2) и другие кольца. В лазерной технике широко применяются красители на основе родамина 6G.
Рис. 4.7. Устройство жидкостного лазера
Структурная формула органического красителя родамин 6G приведена на рис.. Структурная формула органического красителя родамин 6G приведена на рис. 4.8.
Рис. 4.8. Структурная формула органического красителя родамин 6G
Такая макромолекула обладает богатым набором разрешенных значений энергии электронных, колебательных и вращательных состояний. Энергетические расстояния между этими состояниями имеют порядок (1÷3)эВ, (0,1÷0,01) эВ и (10-3÷10-4) эВ, соответственно. Колебательные и вращательные состояния перекрываются друг с другом, образуя серии разрешенных энергетических полос, соответствующих определенным электронным состояниям.
Эти состояния можно разбить на две группы: синглетные (S) и триплетные (Т) состояния (см. рис. 4.9) к первой группе относится состояние с антипараллельной ориентацией спинов (S = 0), а ко второй – с параллельной (S = 1) ориентацией.
Рис. 4.9. Электронные состояния жидкостного лазера
Каждое электронное состояние сопровождается серией колебательных уровней (выделенных жирными линиями) и серией вращательных уровней. Согласно правилам отбора по спинам оптические переходы разрешены между состояниями с одинаковой мультиплетностью (S = 0) т.е. переходы S – S (синглет – синглетные) и Т – Т (триплет – триплетные). Они имеют наибольшую вероятность.
При нормальных условиях молекулы находятся в основном состоянии S0. В результате поглощения оптического излучения молекула переходит из основного состояния S0 на один из колебательно – вращательных уровней S1. Спектр поглощения, определяемый такими переходами представляет широкую полосу. Спектральное положение максимума полосы поглощения определяет цвет красителя, и для разных веществ изменяется примерно от 0,3 до 1 мкм. Ширина полосы поглощения также различна для разных красителей, и примерно равна 0,2 эВ.
Падая в результате оптического перехода S0 → S1 в одно из возбужденных состояний полосы S1, молекула в результате релаксационных безызлучательных процессов по колебательно – вращательным подуровням внутри состояния S1 переходит на нижние уровни группы S1. Этот процесс термализации происходит очень быстро, за время порядка 1 пс. Термализованные носители из состояния S1 излучательно или безызлучательно переходят в основное состояние S0. У небольшого количества известных красителей излучательные процессы преобладают над безызлучательными. Излучательное время жизни для переходов S1 → S0 мало и составляет примерно 1 нс.
При интенсивной оптической накачке между нижними состояниями полосы S1 и верхними S0 может быть достигнута инверсия населенностей. Генерация осуществляется по четырехуровневой схеме между энергетическими состояниями полос S1 и S0. Триплетные состояния Т1 и Т2 не участвуют в процессе лазерной генерации, а, напротив, препятствует ей.
Наибольший интерес представляет лазер на органическом красителе, используемый как генератор с перестраиваемой длиной волны. Для осуществления этой возможности применяют дисперсионный резонатор, собственную частоту которого можно перестраивать. Идеальный вариант – одномодовый одночастотный резонатор.
Вероятность оптических переходов S0 → S1 с красителем весьма высока, показатель поглощения и показатель усиления для этих веществ могут быть очень велики. Они примерно на два порядка превышают показатель усиления малого сигнала для твердотельных лазеров на граните и рубине. Лазеры на красителях, обладая высоким коэффициентом усиления, требуют небольшого объема активной среды (1 мм3).
Поглощение интенсивного излучения накачки и последующий нагрев малого объема красителя приводит к необходимости быстрой непрерывной замены вещества в рабочем объеме. Если этого не делать, произойдет термическое разложение красителя, а также накопление молекул в триплетном состоянии Т1 и срыв генерации.
Применяя набор различных красителей, жидкостные лазеры перекрывают диапазон дин волн от 0,34 мкм до 1,17 мкм. КПД современных лазеров на органических красителях достигает 30 % при накачке лазерным излучением, и 1 % при накачке импульсными лампами.
В непрерывном режиме выходная мощность рассматриваемых лазеров достигает десятка Ватт, в импульсных режимах мощность может достигать от десятка ватт до нескольких МВт при длительности импульса 20 нс и частоте повторения до 200 Гц, расходимость лазерного пучка составляет (2 ÷2,5) мрад.
В режиме синхронизации мод возможна генерация очень коротких световых импульсов (3∙10-14 с).
