Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опт.связь Учебное пособие.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
14.18 Mб
Скачать

3.2.2 Характеристики светодиодов

Цвет свечения характеризуется спектральными характеристиками излучения диодов. Диоды на основе фосфида галлия имеют спектральные характеристики с двумя выраженными максимумами в красном и зеленом участках спектра. В зависимости от количества активирующих примесей, внедренных в структуру излучающего кристалла при изготовлении, соотношение между значениями максимумов изменяется в сторону красного или зеленого цвета. При достижении этого соотношения 10:1 и выше получают красный или зеленый цвет излучения. При соотношениях максимумов 10:4 получают светодиоды желто-оранжевого цвета свечения.

Рис. 3.2. Схема включения светодиода

Излучение диода характеризуется диаграммой направленности, которая определяется конструкцией диода, наличием линзы, оптическими свойствами защищающего кристалл материала. Излучение светодиода может быть узконаправленным или рассеянным.

Эффективность работы светодиода характеризуется зависимостями параметров оптического излучения от прямого тока через элемент от длины волны излучения. Зависимость потока излучения Ф [Вт] от прямого тока Iпр называется излучательной (яркостной) характеристикой.

Рис. 3.3. Излучательная характеристика светодиода

В справочной литературе излучательной характеристикой называют также зависимость яркости L [кд/м2] от прямого тока, а зависимость силы света от прямого тока называется световой характеристикой.

В качестве параметра электрического режима выбран прямой ток через светодиод, а не напряжение на нем. Это связано с тем, что у светодиода p-n - переход включают в прямом направлении и его электрическое сопротивление мало. Обычно прямой ток через светодиод задается внешней цепью: например, соответствующим выбором сопротивления RОГР, ограничивающим ток (см. рис. 3.2) .

При малых токах Iпр велика доля рекомбинации составляющей тока и коэффициент инжекции мал. С ростом прямого тока поток излучения сначала быстро увеличивается до тех пор, пока в токе диода не становится преобладающей диффузионная составляющая тока. Дальнейшее увеличение Iпр приводит к постепенному насыщению центров люминесценции и сопровождается ростом ударной рекомбинации. Поэтому при определенном токе излучательная характеристика имеет максимум. Максимальная сила излучения зависит от площади и геометрии излучающего p-n - перехода и от размеров электрических контактов.

3.2.3 Определение и оценка параметров светодиодов

Параметры светодиодов как элементов цепей постоянного тока определяются их вольт-амперными характеристиками. Различия прямых ветвей ВАХ связаны с разницей в ширине запрещенной зоны применяемых материалов. Чем меньше длина волн излучения, тем больше прямое падение напряжения на светодиоде и потери электрической энергии в нем. Обратные ветви ВАХ имеют малое допустимое обратное напряжение, так как ширина p-n - перехода в светодиодах невелика. При работе в схемах с большими обратными напряжениями последовательно со светодиодом необходимо включать обычный диод.

Рис. 3.4. Вольт-амперные характеристики диодов

Основные параметры диодов зависят от температуры. Зависимость яркости (силы света) от температуры практически линейная. С увеличением температуры яркость (сила света) уменьшается. В интервале рабочих температур яркость может изменяться в 2 - 3 раза.

Рис. 3.5. Зависимость тока IПР от напряжения UПР: 1 – красный СИД GaAs60P40, 2 – оранжевый СД GaAs35P65N, 3 – желтый СИД GaAs14P86N, 4 – зеленый СИД GaPN

Светодиоды обладают высоким быстродействием. Излучение нарастает за время менее 10 с после передачи импульса прямого тока. Однако для устройств отображения, в которых обычно используются светодиоды, быстродействие не является критичным. Поэтому для серийных светодиодов временные параметры не приводятся.

Светодиоды, широко применятся в радиоэлектронной аппаратуре в устройствах индикации: включения, готовности и работе, наличия напряжения, аварийной ситуации, достижения температурного порога, выполнения функционального задания.

Светодиоды излучают свет видимого спектра, когда через них протекает электрический ток. Приборы в металлическом корпусе со стеклянной линзой обеспечивают направленное излучение света, а изготовленные в пластмассовых корпусах, выполненных из оптически прозрачного компаунда, создают рассеянное излучение.

Хотя цвет (длина волны) излучения определяется использованным материалом, количе­ство света, испускаемого светодиодом, зависит от тока возбуж­дения и быстро увеличивается с ростом плотности тока.

Положение точки перегиба этих кривых непосредственно связано с шириной запрещенной зоны и для крас­ных светодиодов соответству­ет меньшему прямому паде­нию напряжения. Согласно рисунку, динамическое сопро­тивление красных светодиодов равно (1÷2) Ом, в то время как для материалов, дающих более коротковолновое излу­чение, оно составляет (7÷15) Ом.

По мере роста плот­ности тока через p-n - переход большее число электро­нов и дырок инжектируется в запрещенную зону. При их движении возникают вторич­ные эффекты, повышающие число дырок и электронов, которые могут излучательно рекомбинировать. В результате световая эффективность светодиодов увеличивается. На рис. 3.6 показаны зависимости светового потока от тока возбуждения светодиодов для ряда материалов. Следует отметить, что красные GaP-светодиоды начинают излучать при малых плотностях тока, однако их излучение достигает насыщения при относи­тельно низких плотностях тока по сравнению со светодиодами из других материалов.

Рис. 3.6. Спектральные диапазоны излучения и максимальной фоточувствительности полупроводниковых материалов и структур