Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опт.связь Учебное пособие.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
14.18 Mб
Скачать

2.13 Излучатели на основе гетероструктур

Наилучшие параметры имеют диоды, изготовленные на основе гетероструктур (или гетеропроходов) [23]. На рис. 2.18 изображены энергетические диаграммы излучающей гетероструктуры GaAlAs – GaAs в состоянии равновесия. На металлургической границе перехода образу­ется разрыв (скачок) энергии Е = ЕG1 – ЕG2. Таким образом, гетероструктура имеет различные потенциальные барьеры для инжектируемых дырок и электронов.

Движение носителей в равновесном состоянии гетероструктуры оп­ределяется носителями заряда только одного типа (для гетероструктуры на рис. 2.18 – электронами). Поэтому при приложении прямого напря­жения имеет место односторонняя инжекция — только электронов из широкого слоя (эмиттера) в узкозонный слой (базу). Такая структура, содержащая широкозонный эмиттер и узкозонную базу, называется одинарной гетероструктурой.

Наряду с одинарной в излучающих диодах используется двойная гетероструктура, в которой имеется дополнительно запирающий широко­зонный р3-слой того же, что и база, типа проводимости (в соответствии с рис. 2.18). В двойной гетероструктуре второй потенциальный барьер препятствует выходу электронов из базовой области (зона базы образует потенциаль­ную «яму», в которой скапливаются инжектированные электроны).

Рис. 2.18. Энергетическая диаграмма излучающей одинарной структуры

Рис. 2.19. Энергетическая диаграмма двойной гетероструктуры

Из­быточная концентрация носителей в активной (излучающей) области и односторонняя инжекция резко повышают внутренний квантовый вы­ход гетероструктуры, а также ее быстродействие.

В самом деле, использование двойной гетероструктуры обеспечивает локализацию инжектированных носителей зарядов в базе при уменьшении ее ширины вплоть до нескольких микрометров. Это и позволяет при сохранении внутреннего квантового выхода значительно повысить быст­родействие двойных гетероструктур. В одинарной гетероструктуре при уменьшении ширины базы мощность излучения резко падает, а быстро­действие растет незначительно. Для лучших образцов на одинарной ге­тероструктуре внешний квантовый выход составляет (34) %, а время переключения (4080) нс; двойные гетероструктуры имеют примерно та­кое же значение внешнего квантового выхода, а время переключения (2030) нс.

Важно подчеркнуть, что односторонняя инжекция не связана со сте­пенью легирования эмиттерной и базовой областей, как это имеет место в обычном (гомогенном) переходе. В результате она сохраняется до зна­чительных плотностей тока, и появля­ется возможность изменения степени легирования областей гетерострукту­ры без ухудшения инжекции p-n - перехода.

Другой отличительной особенно­стью гетероструктур является разни­ца в оптических свойствах базы и эмиттера. В результате спектральная характеристика излучения узкозонной базы оказывается сдвинутой в область длинных волн по отношению к спектральной характеристике поглощения широкозонного эмиттера (в соответствии с рис. 2.20). Поэтому излучение выводится из СИД через эмиттер практически без поглощения.

Рис. 2.20. Спектральная характеристика базы и эмиттера гетероструктуры

В излучателях с двойной гетероструктурой и удаленной подложкой сказывается явление многократного отражения («многопроходный эф­фект»). Излучение, претерпевающее на внешней границе кристалла ге­тероструктуры полное внутреннее отражение, многократно отразившись от различных граней кристалла, в конце концов, падает на внешнюю гра­ницу под таким углом, который дает возможность ему выйти наружу. Как видим, многопроходный эффект является полезным только в том случае, если поглощение излучения в полупроводнике мало. Поглоще­ние в узкозонной базе удается несколько компенсировать с помощью фотолюминесценции: поглощение кванта излучения ведет к новому акту излучения.

Все преимущества гетероструктур достижимы только при высоком качестве гетероперехода. Для получения качественного гетероперехода необходимо иметь хорошее совпадение параметров структуры по обе стороны от металлургической границы: различие постоянных кристалли­ческих решеток не должно превышать 0,01 %, близкими должны быть и температурные коэффициенты расширения. В тех случаях, когда эти требования не выполняются. Высокая концентрация дефектов в области гетероперехода практически сводит к нулю все преимущества гетероперехода.