- •А.Н. Игнатов
- •Новосибирск 2013
- •Предисловие
- •1.1 Введение в волоконную оптику
- •1.2 Особенности оптической электроники
- •1.3 История развития оптоэлектроники
- •1.4 Современное состояние оптоэлектронной элементной базы
- •1.5 Система обозначений оптоэлектронных приборов индикации
- •1.6 Система обозначений полупроводниковых приборов и оптронов
- •Тестовые вопросы к главе 1 «Введение в оптоэлектронику»
- •2 Физические основы оптоэлектроники
- •2.1 Различие между фотометрическими и энергетическими характеристиками
- •2.2 Фотометрические характеристики оптического излучения
- •2.2.1 Функция видности и ее зависимость от длины электромагнитной волны
- •2.2.2 Телесный угол, световой поток и механический эквивалент света
- •2.2.3 Сила света, IV
- •2.2.4 Освещенность поверхности, е
- •2.2.5 Закон освещенности
- •2.2.6 Светимость излучающей поверхности, м
- •2.2.7 Яркость светящейся поверхности, l
- •Величина
- •2.2.8 Закон Ламберта
- •2.2.9 Световая экспозиция, нv
- •2.5 Колориметрические параметры
- •2.6 Когерентность оптического излучения
- •2.6.1 Монохроматическая электромагнитная волна (мэв)
- •2.6.2 Особенности излучения электромагнитных волн в ультрафиолетовом (уф), видимом и инфракрасном (ик) диапазонах
- •2.7 Квантовые переходы и вероятности излучательных переходов
- •2.7.1 Энергетические уровни и квантовые переходы
- •2.7.2 Спонтанные переходы
- •2.7.3 Вынужденные переходы
- •2.7.4 Соотношения между коэффициентами Эйнштейна
- •2.7.5 Релаксационные переходы
- •2.8 Ширина спектральной линии
- •2.9 Использование вынужденных переходов для усиления электромагнитного поля
- •2.10 Механизм генерации излучения в полупроводниках
- •2.11 Прямозонные и непрямозонные полупроводники
- •2.12 Внешний квантовый выход и потери излучения
- •2.13 Излучатели на основе гетероструктур
- •2.14 Поглощение света в твердых телах
- •2.15 Типы переходов и характеристики излучающих полупроводниковых структур.
- •2.16 Параметры оптического излучения
- •Тестовые вопросы к главе 2 «Физические основы оптоэлектроники»
- •3 Приборы некогерентного излучения
- •3.1 Источники света
- •3.1.1 Разновидности источников
- •3.2 Основные характеристики и параметры светодиодов
- •3.2.1 Параметры светодиодов
- •3.2.2 Характеристики светодиодов
- •3.2.3 Определение и оценка параметров светодиодов
- •3.2.4 Схемы возбуждения, обеспечивающие высокую световую эффективность светодиодов
- •3.2.5 Влияние температуры
- •3.2.6 Срок службы
- •3.2.7 Ограничение тока
- •3.2.8 Достоинства твердотельных излучателей
- •3.3 Конструкции светодиодов
- •3.4 Основные схемы возбуждения светодиодов
- •3.5 Выбор типа светодиода
- •3.5.1 Основные соображения для выбора типа светодиода
- •3.5.2 Памятка разработчику
- •3.6 Электрическая модель светодиода
- •3.7 Светодиоды инфракрасного излучения
- •3.8 Светодиодные источники повышенной яркости и белого света
- •Тестовые вопросы к главе 3 «Источники некогерентного излучения»
- •4 Приборы когерентного излучения
- •4.1 Физические основы усиления и генерации лазерного излучения
- •4.2 Структурная схема лазера
- •4.3 Лазеры на основе кристаллических диэлектриков
- •4.4 Жидкостные лазеры
- •4.5 Газовые лазеры
- •4.6 Устройство и принцип действия полупроводникового инжекционного моно лазера
- •4.7 Устройство и принцип действия полупроводниковых лазеров с гетероструктурами
- •4.8 Волоконно-оптические усилители и лазеры
- •4.8.1 Волоконные усилители
- •4.8.2 Волоконные лазеры
- •4.8.3 Волоконные лазеры на основе вынужденного комбинационного рассеяния
- •4.9 Светоизлучающие диоды для волоконно-оптических систем
- •4.10 Сравнительная характеристика лазеров и светодиодов
- •4.10.1 Параметры отечественных полупроводниковых лазеров и оптических модулей
- •4.11. Квантовые эффекты в полупроводниках
- •4.12. Фотонные нанокристаллы.
- •4.13. Наноэлектронные лазеры
- •4.13.1. Наноэлектронные лазеры с горизонтальными резонаторами
- •4.13.2. Наноэлектронные лазеры с вертикальными резонаторами
- •4.14.1. Органические светодиоды
- •4.14.2. Пассивно-матричные oled
- •4.14.3. Активно-матричные oled
- •4.14.4. Технологии получения органических светодиодов
- •Тестовые вопросы к главе 4 «Приборы когерентного излучения»
- •5 Полупроводниковые фотоприемные приборы
- •5.1 Принцип работы фотоприемных приборов
- •5.2 Характеристики, параметры и модели фотоприемников
- •5.2.1 Параметры фотоприемников
- •5.2.2 Характеристики фотоприемников
- •5.2.3 Параметры фотоприемника как элемента оптопары
- •5.2.4 Электрические модели фотоприемников
- •5.3 Фотодиоды на основе p-n – перехода
- •5.4 Фотодиоды с p–I–n структурой
- •5.5 Фотодиоды Шоттки
- •5.6 Фотодиоды с гетероструктурой
- •5.7 Лавинные фотодиоды
- •5.8 Фототранзисторы
- •5.9 Фототиристоры
- •5.10 Фоторезисторы
- •5.11 Основные характеристики и параметры фоторезистора
- •5.12 Пзс приемные фотоприборы
- •5.13 Фотодиодные сбис на основе моп – транзисторов
- •5.14 Пиротехнические фотоприемники
- •5.15. Фотоприемные наноэлектронные приборы
- •5.15.1. Фотоприемники на квантовых ямах
- •5.15.2. Фотоприемники на основе квантовых точек
- •Тестовые вопросы к главе 5 «Полупроводниковые фотоприемные Приборы»
- •6 Оптроны
- •6.1 Устройство и принцип действия оптронов
- •6.2 Структурная схема оптрона
- •6.3 Классификация и параметры оптронов
- •6.4 Электрическая модель оптрона
- •6.5 Резисторные оптопары
- •6.6 Диодные оптопары
- •6.7 Транзисторные оптопары
- •6.8 Тиристорные оптопары
- •Тестовые вопросы к главе 6 «Оптроны»
- •7 Индикаторные приборы
- •7.1 Жидкокристаллические индикаторы
- •7.1.1 Основы теории
- •7.1.2 Ячейки на основе эффекта динамического рассеяния (др – ячейки)
- •7.1.3 Ячейки на основе твист-эффекта
- •7.1.4 Основные типы и параметры
- •7.1.5 Схемы включения жидкокристаллических индикаторов
- •7.1.6 Схемы управления многоразрядными индикаторами
- •7.2 Электролюминесцентные индикаторы
- •7.2.1 Устройство и принцип действия
- •7.2.2 Типы и параметры
- •7.2.3 Схемы включения электролюминесцентных индикаторов
- •7.3 Плазменные панели и устройства на их основе
- •7.4 Электрохромные индикаторы
- •7.5. Отображение информации индикаторными приборами
- •Тестовые вопросы к главе 7 «Индикаторные приборы»
- •8 Применение оптоэлектроннх приборов
- •8.1 Устройство и принцип действия оптоэлектронных генераторов
- •8.1.1 Блокинг - генератор
- •8.1.2 Генератор линейно изменяющегося напряжения
- •8.1.3 Генератор с мостом Вина
- •8.2 Применение оптоэлектронных приборов в аналоговых ключах и регуляторах
- •8.3 Применение оптронов для выполнения логических функций
- •8.4 Применение оптронов как аналогов электрорадиокомпонентов
- •8.5 Устройство и принцип действия оптоэлектронных усилителей
- •8.6 Устройство и принцип действия оптоэлектронных цифровых ключей
- •8.7 Применение оптоэлектронных приборов для измерения высоких напряжений и управления устройствами большой мощности
- •8.8 Устройство и принцип действия оптических устройств записи информации
- •8.9 Принцип лазерно-оптического считывания информации
- •8.10 Принципы цифровой оптической записи и воспроизведения информации с компакт дисков
- •8.10.1 Устройство компакт-диска
- •8.10.2 Запись на компакт диски
- •8.10.3 Отличия cd-r/cd-rw дисков от штампованных
- •8.10.4 Маркировка дисков
- •8.10.5 Надежность дисков cd-r/rw в сравнении со штампованными
- •8.10.6 Изготовление и тиражирование компакт-дисков
- •8.10.7 Воспроизведение компакт-диска
- •8.10.8 Устройство накопителей на cd-rom
- •8.10.9 Представление и параметры звукового сигнала на cd
- •8.10.10 Джиттер
- •8.11 Оптоэлектронные сенсорные системы взаимодействия человека с электронной техникой.
- •8.11 Лазерный микропроектор со спиральной разверткой для мобильных устройств
- •Тестовые вопросы к главе 8 «Применение оптоэлектронных приборов»
- •9. Волоконно-оптические системы связи
- •9.1. Общие сведения
- •9.2. Классификация волоконно-оптических систем распределения
- •9.3. Волоконно-оптические системы распределения
- •9.4. Оптические передатчики
- •9.5 Приемники волоконно-оптических систем связи
- •9.5.1 Приемные оптоэлектронные модули
- •9.6. Цифровые волоконно-оптические системы связи
- •9.7. Аналоговые волоконно-оптические системы связи
- •9.8 Умные соединители на основе смартлинков
- •9.8.1 Технические решения смартлинков
- •9.8.2 Самоформирующиеся компьютеры
- •9.8.3 Оптоволоконные нейроинтерфейсы
- •9.9 Волоконно оптические технологии для сетей доступа
- •9.9.1 Общие сведения
- •9.9.2 Тенденции мирового развития сетей доступа
- •9.9.3 Технологии оптических сетей доступа
- •9.9.4 Категории оптических сетей доступа
- •9.9.5 Волокно до бизнеса – FttBusiness
- •9.9.6 Волокно до дома – ftth
- •9.9.7 Волокно до многоквартирного дома – fттb
- •9.9.8 Волокно до сельского района
- •9.10 Медиоконверторы и их применение в оптических системах связи
- •9.10.1 Общие сведения
- •9.10.2. Основные технические требования, предъявляемые к оборудованию
- •9.10.3. Классификация медиаконвертеров по критерию управляемости
- •9.10.4. Конструктивное исполнение
- •9.10.5. Основные параметры медиаконвертеров
- •9.10.6. Система управления
- •9.10.7. Устройство и применение медиоконвертора rs-485
- •Тестовые вопросы к главе 9 «Волоконно-оптические системы связи»
- •Приложение п1
- •Приложение п2
- •Приложение п3
- •Приложение п4 Перечень принятых сокращений
- •Список цитированной литературы
2.9 Использование вынужденных переходов для усиления электромагнитного поля
То обстоятельство, что вынужденное излучение возбужденных микрочастиц при переходах с верхнего энергетического уровня на нижний когерентно (совпадает по частоте, фазе, поляризации и направлению распространения) с вынуждающим, наталкивает на мысль о возможности использования вынужденных переходов для усиления электромагнитного поля. Чтобы оценить возможность такого усиления, рассмотрим обмен энергии между полем и веществом [22]. Будем предполагать, что вещество имеет два энергетических уровня Е1 и Е2 с населенностями N1 и N2, а частота внешнего поля равна частоте квантового перехода 21. При объемной плотности энергии П число вынужденных переходов в единицу времени в единице объема с выделением энергии n21 = BП N2, а выделяемая при этих переходах энергия в единице объема в единицу времени, т.е. мощность
Pвыд = n21h21 = BП N2 h21. (2.53)
Аналогично число вынужденных переходов с поглощением энергии и поглощаемая от внешнего поля мощность в единице объема соответственно
n12= BП N1; (2.54)
Рпогл= BП N1 h21. (2.55)
Изменение мощности электромагнитного поля
Р = Рвыд-Рпогл=B h21(N2- N1). (2.56)
Назовем эту величину мощностью взаимодействия.
Если Р > 0, т.е. выделяемая мощность превышает поглощаемую, то в системе происходит увеличение энергии поля или усиление электромагнитного поля. При Р < 0 преобладает поглощение энергии и энергия внешнего поля убывает.
Таким образом, условием усиления (Р > 0) будет N2- N1 > 0 или N2/ N1 > 1.
В состоянии термодинамического равновесия населенность верхнего уровня меньше, чем нижнего (N2Б < N1Б ) в соответствии с законом Больцмана. Поэтому вещество в этом состоянии поглощает энергию внешнего поля (Р < 0), так как число квантовых переходов n12 снизу вверх (1 2) с поглощением энергии больше числа квантовых переходов сверху вниз (2 1) n12 с выделением энергии.
Соотношение N2 > N1 является обратным (инверсным) по отношению к состоянию термодинамического равновесия, когда N2Б < N1Б. Поэтому состояние, при котором N2 > N1 , т.е. возможно усиление, называют состоянием с инверсией населенностей уровней.
Закон Больцмана, справедливый для термодинамического равновесия, можно записать так
.
(2.57)
Величину Тп называют температурой перехода. Формально при состоянии с инверсией населенностей эта температура отрицательна (Тп < 0).
Среда, в которой имеется состояние с инверсией населенностей, называется также активной средой, так как в ней возможно усиление электромагнитного поля.
В состоянии термодинамического равновесия N1Б > N2Б, поэтому при воздействии электромагнитного поля число вынужденных переходов снизу вверх (1 2) больше числа вынужденных переходов сверху вниз (2 1): населенность нижнего уровня убывает, а верхнего – растет. При достаточно большой объемной плотности энергии поля П может произойти выравнивание населенностей уровней (N1 и N2), когда числа вынужденных переходов 1 2 и 2 1 равны, т.е. наступает динамическое равновесие. Явление выравнивания населенностей уровней называют насыщением перехода. Таким образом, при воздействии электромагнитного поля на двухуровневую систему можно добиться насыщения перехода, но не инверсии населенностей.
Населенности уровней при любом значении объемной плотности энергии поля находятся из решения скоростных (кинетических) уравнений. Для двухуровневой системы скорости изменения населенностей уровней
dN1/dt = -N1BП - N1E12 + N2BП + N2A21 + N2E21 ;
dN2/dt = N1BП + N1E12 - N2BП - N2A21 - N2E21 ;
N1 + N2 = N, (2.58)
где N – полное число частиц.
Поясним процедуру составления уравнений. Населенность уровня 1 в единицу времени убывает вследствие вынужденных переходов 1 2 на величину N1BП, а из-за безызлучательных переходов 1 2 – на величину N1E12. Одновременно происходит рост населенности N1 вследствие переходов 2 1 на величину N2BП (вынужденные переходы), N1A21 (спонтанные переходы) и N2E21 (безызлучательные переходы). Первые два слагаемых учитывают увеличение N2 в результате вынужденных и безызлучательных переходов 1 2, а остальные определяют убывание N2 вследствие вынужденных, спонтанных и безызлучательных переходов 2 1.
Очевидно, что для двухуровневой системы при сохранении полного числа частиц dN1/dt = - dN2/dt.
В стационарном состоянии dN1/dt = dN2/dt = 0, поэтому можно написать систему двух уравнений
N1(BП + E12) - N2(BП + A21 + Е21) = 0;
N1 + N2 = N. (2.59)
Решая эту систему уравнений, можно найти стационарные величины N1и N2, а затем их отношение:
,
(2.60)
,
(2.61)
,
(2.62)
,
(2.63)
.
(2.64)
Рассмотрим зависимости N1 и N2 от объемной плотности энергии П для случая, когда система до воздействия электромагнитного поля находилась в термодинамическом равновесии с населенностями N1Б и N2Б, определяемыми законом Больцмана. При малых значениях П населенность нижнего уровня N1 убывает, а верхнего N2 растет по линейному закону. При очень больших значениях плотности энергии (П ) N1 и N2 стремятся к среднему значению N/2 = (N1Б + N2Б)/2, соответствующему насыщению переходов.
При отсутствии поля (П = 0) населенности уровней равны N10 и N20 причем N20 > N10. С ростом П N2 убывает, а N1 растет от значений N20 и N10 по линейному закону, но при больших П асимптотически они приближаются к среднему значению N/2 = (N10 + N20)/2, соответствующему насыщению перехода.
Разность населенностей уровней (N2 - N1) определяет мощность взаимодействия Р.
.
(2.65)
Эта формула позволяет найти зависимость мощности взаимодействия от объемной плотности энергии П электромагнитного поля, взаимодействующего с веществом. Зависимость P(П) определяется отношением П / (1 + 12П). При увеличении П мощность сначала (когда 12П << 1) линейно растет, а затем стремится к предельному значению Рпред, кoторое определяется путем раскрытия неопределенности при П т.е. в состоянии насыщения перехода
Рпред = 0,5h21N[E21 - (A21 + E21)]. (2.66)
Учитывая, что обычно вероятность релаксационных переходов много больше вероятности спонтанных, выражению (2.65) можно придать более простой и наглядный вид
,
(2.67)
где рел - время релаксации.
В состоянии насыщения при П (N1 = N2), когда мощность, выделяемая при вынужденных переходах 2 1, равна мощности, поглощаемой при вынужденных переходах 1 2, от электромагнитного поля отбирается мощность Рпред. Эта мощность необходима для поддержания равенства населенностей уровней, которое постоянно стремится нарушаться из-за наличия спонтанных и безызлучательных переходов с вероятностями A21, Е21 и Е12. Число этих переходов непосредственно от плотности энергии не зависит и определяется только населенностью уровней. Получаемая от электромагнитного поля энергия рассеивается в веществе, например в кристаллической решетке, в виде теплоты.
