- •Лекция № 1 Вводная – 2 часа
- •1. Цели и задачи изучения курса
- •2. Определение специальной стали и сплава
- •3. Классификация сталей и сплавов
- •Лекция № 2 Химическая коррозия – 2 часа
- •1. Природа химической коррозии
- •2. Влияние легирующих элементов на жаростойкость
- •Лекция № 3 Электрохимическая коррозия - 2 часа
- •1. Природа электрохимической коррозии
- •2. Виды электрохимической коррозии в сварном соединении
- •2.1. Влияние легирующих элементов на коррозионную стойкость сварных соединений (стойкость против электрохимической коррозии).
- •Лекция № 4 Характеристики работоспособности стали при повышенных температурах - 2 часа
- •1. Критерии жаропрочности
- •2. Влияние легирующих элементов на жаропрочность сварного соединения
- •3. Поведение сварных соединений при высоких температурах
- •Лекция №5 Охрупчивание сварных соединений при повышенных температурах - 2 часа
- •2. Сигма-охрупчивание.
- •3. Разрушение сварного шва под нагрузкой при повышенных температурах.
- •Лекция № 6 Сварка теплоустойчивых сталей - 2 часа
- •1. Трудности сварки теплоустойчивых сталей
- •2. Влияние легирующих элементов на свойства металла шва
- •3. Выбор рациональной технологии сварки
- •Лекция № 7 Сварки хромоникелевых сталей аустенитного и аустенитно-ферритного классов - 2 часа
- •1. Область применения
- •2. Особенности сварки
- •2.1. Аустенитные стали
- •2.2. Аустенитно-ферритные стали
- •3. Технология сварки
- •3.1. Аустенитные стали
- •3.2. Аустенитно-ферритные стали
- •Лекция № 8 Сварка хромистых сталей мартенситного и ферритного классов - 2 часа
- •1. Область применения
- •2. Особенности сварки
- •3. Технология сварки
- •Лекция № 9
- •1 Область применения низколегированных бейнитно-мартенситных сталей и микролегированных сталей
- •2. Особенности сварки
- •3. Технология сварки
- •Лекция № 10
- •1. Область применения среднелегированных мартенситно-бейнитных сталей
- •3. Технология сварки
- •Лекция № 11 Сварка тугоплавких металлов и сплавов на их основе – 2 часа
- •1. Свойства сплавов на основе ванадия, ниобия, тантала, хрома, молибдена,
- •2. Особенности сварки тугоплавких металлов и их сплавов
- •3. Технология сварки тугоплавких металлов и их сплавов
- •3.1. Сварка сплавов на основе хрома, молибдена, вольфрама
- •3.2. Сварка сплавов на основе ванадия, тантала, ниобия и циркония
- •Лекция № 12 Технология сварки алюминия и его сплавов – 2 часа
- •1. Характеристика алюминиевых сплавов
- •2. Особенности сварки
- •3. Способы сварки
- •Лекция № 13 Особенности сварки титановых сплавов – 2 часа
- •1. Характеристика титановых сплавов
- •Лекция №14 Технология сварки титановых сплавов – 2 часа
- •2. Аргонодуговая сварка
- •3. Сварка под флюсом
- •4. Электрошлаковая сварка
- •5. Термообработка сварных соединений
- •Лекция № 15 Сварка меди и ее сплавов – 2 часа
- •1. Характеристика меди и ее сплавов
- •2. Особенности сварки медных сплавов
- •3. Технология сварки меди и ее сплавов
- •Лекция № 16 Сварка чугуна – 2 часа
- •2. Особенности сварки чугуна
- •3. Способы сварки чугуна
- •3.1. Способы сварки, обеспечивающие получение однородного соединения
- •3.2. Способы сварки чугуна разнородными металлами
- •Лекция №17 Сварка плавлением разнородных металлов и сплавов – 2 часа
- •1. Особенности сварки разнородных металлов и сплавов
- •2. Сварка стали с цветными металлами и сплавами
- •2.1. Сварка стали с алюминием
- •2.2. Сварка сталей с медью и ее сплавами
- •2.3. Сварка сталей с титаном (аргонодуговая неплавящимся электродом)
- •2.4. Сварка сталей с ниобием, молибденом и ванадием
- •3. Сварка разнородных цветных металлов и сплавов
- •3.1. Сварка алюминия и его сплавов с медью
- •3.2. Сварка алюминия и его сплавов с титаном
- •3.3. Сварка меди и ее сплавов с титаном
- •3.4. Сварка меди с ниобием, молибденом, танталом
3.1. Способы сварки, обеспечивающие получение однородного соединения
Сварка чугуна порошковой проволокой. В составе порошковых проволок находится требуемое количество графитизаторов (С и Si), а требуемая форма графита обеспечивается модифицированием сварочной ванны.
Серый чугун сваривают проволоками ПП-АНЧ1, ПП-АНЧ2, ПП-АНЧ3 и др..
Основной объем работ – заварка дефектов литья с толщиной стенки отливок свыше 15 мм.
Проволока ПП-АНЧ1. Основа шва – перлитно-ферритная с участками лидебурита и карбидов. Графит – крупнопластинчатый.
Проволока ПП-АНЧ2. Сварка с подогревом 350оС. Шов – ферритно-перлитный, с розеточным графитом.
Проволока ПП-АНЧ3. Сварка с подогревом 600оС. Шов – перлитно-ферритный, с мелким завихренным графитом.
Высокопрочный чугун сваривают проволокой ПП-АНЧ5 с общим или местным подогревом до 500-700оС. Шов – с феррито-перлитной основой и шаровидным графитом. После сварки требуется замедленное охлаждение (менее 100о/С). Химический состав шва и прочностные характеристики соответствуют чугуну ВЧ 45-5.
Сварка чугуна покрытыми электродами. Полугорячая и горячая. Используется для исправления дефектов в массивных толстостенных отливках из серого чугуна. Электроды – чугунные с тонкой обмазкой (ЭЧ-1, ЭЧ-2) или из малоуглеродистой проволоки, в обмазке которой находится графит и кремний (ЦЧ-5). Сварка идет с подогревом 400-550оС (для деталей повышенной жесткости и сложности – 600-700оС). Охлаждение после сварки медленное, т.е. в песке или под асбестом в горне. Графит в шве – крупнопластинчатый, .
Газовая сварка чугуна. В качестве присадки используются чугунные прутки. Флюс – бура. Сваривается серый и высокопрочный чугун. Детали малой массы холодная сварка, в остальных случаях – полугорячая или горячая.
Электрошлаковая сварка. Обладает более мягким, чем дуговая сварка термическим циклом. Используется для сварки серого чугуна большой толщины, при изготовлении литосварных изделий и для ремонтных работ.
Контактная стыковая сварка оплавлением. Производится с предварительным подогревом и последующей термообработкой (все это в губках машины). Припуск на осадку подбирается так, чтобы жидкая прослойка полностью выдавливалась из стыка. Сваривают серый и высокопрочный чугун.
3.2. Способы сварки чугуна разнородными металлами
Сварка порошковой проволокой на основе никеля. Получают тонкостенные (4-20 мм.) герметичные соединения из серого, ковкого и высокопрочного чугуна, что невозможно сделать другими способами за исключением никелевых электродов.
При малой толщине чугунной детали получение соединения осложняется из-за их восприимчивости к воздействию напряжений, что может вызвать образование трещин. Для предотвращения их образования используют тонкую проволоку ПАНЧ 11 1-1,2 мм и сварку ведут с малой погонной энергией на воздухе без дополнительной защиты и подогрева. Производительность сварки в 5 раз выше, чем при использовании никелевых электродов. Временное сопротивление металла шва около 450 МПа, а относительное удлинение около 15 .
Сварка покрытыми электродами на основе никеля. Никелевые электроды имеют стержень:
– из чистого никеля;
– из сплавов никеля с железом (55-70 Ni);
– из сплавов никеля с медью (65-70 Ni).
Никелевые электроды используют для сварки тонкостенных отливок из серого и высокопрочного чугуна, ОЗЧ-4 (стержень из проволоки НП-2). Сварку ведут постоянным током обратной полярности без подогрева в нижнем или вертикальном положениях.
Для снижения размеров ЗТВ используют предельно низкую погонную энергию. Сварку ведут короткими валиками длиной 20-30 мм. Шов часто проковывают для снятия остаточных напряжений, и новый валик накладывают только после остывания детали.
Железоникелевые электроды отличаются тем, что дают шов с повышенной стойкостью против горячих трещин и достаточной прочностью по отношению к ковкому и высокопрочному чугуну, ОЗЖИ-1 (стержень – Св-08Н50), нижнее и вертикальное положения; постоянный ток обратной полярности; сварка холодная.
Часто используют комбинированные процессы: обварка кромок никелевым электродом и заполнение шва железоникелевым. Такая технология с использованием специальных облицовочных электродов используется при ремонте изделий из горелого чугуна , т.е. окисленного и пропитанного маслом.
Сварка стальными электродами. Этот способ не обеспечивает хорошего качества и достаточной прочности по отношению к чугуну из-за закалочных структур и трещин в ЗТВ, АН-1 (стержень из Св-08).
Сварку выполняют как с подогревом, так и без него. Без подогрева сварка без закалочных структур в ЗТВ не возможна. Поэтому сварку первого слоя ведут на минимальной погонной энергии валиком длиной порядка 50 мм и сразу же накладывают сверху второй валик, что приводит к отпуску первого слоя.
При ремонте толстостенных деталей и при сварке без подогрева в кромки предварительно ввертывают стальные шпильки:
Сварка стальными электродами с получением аустенитного или феррит ного шва. Сварку аустенитными электродами выполняют без подогрева только как многослойную. Предварительный подогрев 300-400оС снижает вероятность образования трещин, например, ОЗЛ-27 (стержень из проволоки Св-04Х19Н11М3).
Для получения ферритных швов используют электроды ЦЧ-4А из малоуглеродистой проволоки с феррованадием в составе покрытия; рекомендуется местный подогрев 300оС; сварка в нижнем положении на переменном токе или постоянном токе обратной полярности. Ванадий является сильным карбидообразующим элементом и связывает в карбиды весь углерод, поступающий в шов из основного металла.
Электроды используют для заварки дефектов отливок и трещин с применением шпилек.
Сварка электродами на основе меди. При сварке электродами на основе меди наплавленный металл представляет собой смесь меди и железо-углеродистого сплава. Это связано с нерастворимостью Fe и Cu друг в друге.
Наилучшая прочность и обрабатываемость щвов достигается при содержаниив шве 80-95 Cu и 5-20 Fe. Временное сопротивление при этом приблизительно 200 МПа, что достаточно для сварки серого чугуна: ОЗЧ-2, ОЗЧ-6, в покрытии железный порошок, стержень из М1, сварка и наплавка изделий из серого и ковкого чугуна без подогрева в нижнем и вертикальном положениях на постоянном токе обратной полярности и др. Сварку ведут участками длиной 30-50 мм. Перед наложением каждого валика необходима проковка предыдущего.
Часто процесс сварки комбинируют: облицовка шва – никелевым электродом с заполнением кромок медно-железным.
