- •М.М.Бараболя вища математика курс лекцій
- •Властивості:
- •4. Матриця, обернена до верхньої трикутної матриці, також є верхньою трикутною матрицею.
- •Якщо м1(x1, y1, z1), м2(x2, y2, z2) — дві точки у просторі, то відстань d між ними визначається так:
- •Нехай вектор а має початок у точці м1(х1, y1, z1), а кінець — у точці м2(х2, y2, z2). Тоді величини
- •Лекція 15-17. Криві другого порядку. Еліпс. Коло
- •Гіпербола
- •Парабола
- •Перша визначна границя
- •Друга визначна границя
- •Наслідки з формул для визначних границь
- •Правила розкриття невизначенності
- •Неперервність функції
- •Графічна ілюстрація
- •Властивості неперервних функцій
- •Розриви функції
- •Можливі варіанти розриву функцій в точці
- •Поняття похідної
- •Похідна складної функції
- •Візьмемо: . Тоді за правилом 4
- •Нехай і . Тоді за правилом 5 дістаємо:
- •Функції визначені та неперервні на деякому проміжку і;
- •Диференційовні в точці t0 і;
- •Логарифмічне диференціювання
- •Правила обчислення диференціала
- •Диференціали вищих порядків
- •Розв'язання
- •Отже, наочне уявлення дозволяє сформулювати властивості зростаючих та спадних функцій.
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Первісна та її властивості. Інтеграл та його властивості
- •Методи інтегрування. Розв’язування прикладів.
- •Доведення
- •Теореми 1 і 2 виражають основну властивість первісної.
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Дійсно, за правилом похідної складеної функції маємо:
- •Це правило можна записати в інтегральній формі:
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Із властивостей первісної і формули Ньютона-Лейбніца випливають основні властивості інтеграла.
- •Доведемо ці рівності:
- •Розв'язання
- •Розв’язання.
- •Лекція 40. Диференціальні рівняння першого порядку. Задача Коші.
- •2.Диференціальні рівняння з відокремлюваними змінними.
- •1. Загальні поняття та означення. Задача Коші.
- •Рівняння вигляду
- •Властивості і теореми
- •Застосування перетворення Лапласа
- •Теорема (ознака Лейбніца). Знакопочерговий ряд (1) збігається, якщо:
- •Послідовність абсолютних величин членів ряду монотонно спадає, тобто
- •Загальний член ряду прямує до нуля: При цьому сума ряду (1) задовольняє нерівностям
- •Розбіжний (гармонійний ряд). ●
- •Нехай — довільна періодична функція з періодом 2 . Припустимо, що функція розкладається в тригонометричний ряд, тобто є сумою ряду
- •Розв'язання
- •Розв'язання
- •Виявляється, що для кожного натурального ге правильна і загальна формула:
- •Доведення За означенням степеня з натуральним показником маємо:
- •Розглянемо основні наслідки із формули Ньютона.
- •Розв'язання
- •Розв'язання
- •Розв'язання Для загального члена розкладу маємо:
- •Розв'язання
- •Графічно добуток двох подій, як і двох множин, зображається так, як на рисунку:
- •Література: Основна
- •Додаткова
Правила обчислення диференціала
Правило 1.
Нехай
.
Тоді
або
Правило 2.
Дано
.
Тоді
Правило 3.
Маємо
,
.
Тоді
Приклад.
.
Знайти диференціал
за правилом 3 маємо:
Правило 4.
Якщо
,
,
то
Правило 5.
Якщо функція
має обернену
,
то
.
Правило 6. Якщо функції задані у параметричному вигляді
,
,
то
.
Таблиця диференціалів
1.
.
2.
.
3.
.
4.
.
5.
.
6.
.
7.
.
8.
.
9.
.
10.
.
11.
.
12.
.
13.
.
14.
.
15.
.
16.
.
17.
.
Диференціали вищих порядків
Диференціал
функції є також функцією незалежної
змінної, а тому його можна диференціювати.
Розглянемо функцію
.
Означення. Другим диференціалом функції у = f(x) називається вираз d(dy).
Позначення:
Аналогічно дістаємо
третій диференціал
і т. д. до диференціала n-го
порядку
.
Диференціал незалежної змінної dx не залежить від х, тому, диференціюючи dx за х, слід розглядати dx як величину сталу відносно х. Отже, приходимо до простих співвідношень між послідовними диференціалами і послідовними похідними:
(1)
Приклад. Знайти третій диференціал функції
.
Згідно з (1) дістаємо:
Література:
ОЛ1 стр.223-225
Лекція 26-27. Геометричний зміст похідної. Фізичний зміст похідної
Геометричний зміст похідної.
Рівняння дотичної до графіка функції.
Виконання вправ.
Ми розглядали задачу про знаходження кутового коефіцієнта дотичної. Порівнюючи одержані результати з означенням похідної, можна зробити висновок: значення похідної функції у = f(x) в точці xo дорівнює кутовому коефіцієнту дотичної до графіка функції в точці з абсцисою xo : f'(xo) = k = tg α .
Розглянемо функцію у = f(x). Її графік зображено на рис.
У точці М(xo;yo) проведено дотичну до кривої у=f(x). Складемо рівняння дотичної AM, знаючи координати точки М(xo;yo) дотику і рівняння у = f(x) кривої. Дотична — це пряма. Рівняння будь-якої прямої має вигляд: у = kx + b. Оскільки k = f'(xo), тому рівняння дотичної має вигляд:
у = f'(xo)x + b. (1)
Знайдемо b, виходячи з того, що дотична проходить через точку М(xo;yo) і тому її координати задовольняють рівнянню дотичної:
уо = f '(хo) · хo + b, звідси b = уo – f '(xo) · xo.
Тепер підставимо значення b в рівняння (1) дотичної і одержимо:
у = f '(xo) ·x + уо – f '(xo) · xo y – yо = f '(xо )(x – xo)·
Отже, рівняння дотичної до кривої у = f(x) в точці М(xo; уo) має вигляд: y – yо = f '(xo)(x – xo). (2)
Рівняння дотичної до кривої у = f(x) у заданій точці xo можна знаходити за таким планом (схемою):
1. Записуємо рівняння (2) дотичної: y – yо = f '(xo)(x – xo).
2. Знаходимо уo = f(xo)·
3. Знаходимо значення f '(x) у точці xo: f '(xo).
4. Підставляємо значення xo, yo і f '(xo) y рівняння (2).
Рівняння нормалі до кривої можна вивести з самого поняття – це пряма, перпендикулярна до дотичної:
Приклад 1. Складіть рівняння дотичної до графіка функції у = х2 - 4х в точці xo = 1. Виконайте схематичний рисунок.
