- •Рябухин ю.И. Общая химия Учебное пособие
- •«Широко распростирает химия руки свои в дела человеческие»
- •1. Химия: определение, задачи, значение, основные понятия
- •Основные термины
- •2. Стехиометрические1 законы
- •2.1. Закон сохранения массы2
- •2.2. Закон постоянства состава
- •2.3. Закон кратных отношений
- •2.4. Закон эквивалентов
- •2.5. Закон авогадро
- •3. Периодический закон и периодическая система химических элементов д.И. Менделеева
- •3.1. История систематизации химических элементов
- •3.2. Основная закономерность периодического закона
- •3.3. Структура периодической системы химических элементов.
- •3.4. Принцип построения периодической системы
- •1.2. Систематика химических элементов Периодический закон и Периодическая система химических элементов д.И.Менделеева
- •3.5. Значение периодического закона и периодической системы химических элементов д.И. Менделеева
- •4. Строение атома
- •4.1. Электрон2
- •4.2. Модель строения атома томсона
- •4.3. Ядерная модель строения атома резерфорда
- •Подтверждение теории Резерфорда
- •Значение теории Резерфорда
- •4.4 Уравнение шрёдингера1. Электронная конфигурация атома
- •Алгоритм написания электронных формул атомов химических элементов
- •1.1. Строение атома1 Квантовые числа
- •Атомные орбитали
- •Правило Клечковского1
- •Принцип (запрет) Паули2
- •Правило Хунда1
- •5. Химическая связь
- •5.1. Понятие химической связи
- •5.2. Электроотрицательность
- •5.3. Природа и механизм образования ковалентной связи
- •Механизм перекрывания атомных орбиталей
- •5.4. Характерные особенности ковалентной связи
- •5.5. Валентность атомов химических элементов. Поляризация ковалентной связи. Дипольный момент
- •5.6. Ионная связь
- •1.3. Химическая связь Характеристики химической связи
- •Ковалентная связь.
- •Обменный механизм образования ковалентной связи
- •Свойства ковалентной связи
- •Донорно-акцепторный механизм образования ковалентной связи
- •Виды ковалентной связи
- •Гибридизация атомных орбиталей
- •Направленность ковалентной связи и пространственная конфигурация молекул
- •Полярные и неполярные молекулы
- •1.4. Межмолекулярные взаимодействия
- •Водородная связь
- •1.5. Строение кристаллов химическая связь в твёрдых телах Кристаллическая решётка
- •Координационное число
- •Типы кристаллов
- •Молекулярные кристаллы
- •Ковалентные кристаллы
- •Ионная связь. Ионные кристаллы
- •Металлические кристаллы. Металлическая связь
- •2. Химическая термодинамика
- •2.1. Основные понятия
- •Внутренняя энергия
- •2.2. Работа и теплота
- •Первой закон термодинамики
- •2.3. Второй закон термодинамики. Энтропия.
- •Свободные энергии Гельмгольца и Гиббса
- •3. Химическая кинетика
- •3.1. Скорость химической реакции
- •Энергия активации химической реакции
- •Закон действующих масс
- •Правило Вант-Гоффа1
- •3.2. Химическое равновесие
- •Принцип Ле Шателье1
- •4. Фазовое равновесие
- •5. Катализ
- •6. Общие свойства растворов. Растворы неэлектролитов
- •6.1. Дисперсные системы
- •Классификация дисперсных систем в зависимости
- •Значение дисперсных систем
- •6.2. Молекулярные растворы
- •Сходство молекулярных растворов с химическими соединениями
- •Отличие сольватов от химических соединений
- •6.3. Концентрация растворов
- •6.4. Способы выражения состава растворов
- •6.5. Растворимость газов, жидкостей и твёрдых веществ
- •Факторы, влияющие на растворимость газов в жидкостях
- •Растворимость жидкостей в жидкостях
- •Растворимость твёрдых веществ в жидкостях
- •6.6. Закономерности поведения растворов: закон рауля
- •6.7. Осмос3
- •7. Растворы электролитов
- •7.1. Теория аррениуса
- •7.2. Теория каблукова
- •7.3. Электролиты и неэлектролиты. Диссоциация электролитов
- •7.4. Свойства растворов электролитов
- •7.5. Ионное произведение воды
- •7.6. Гидролиз солей
- •7.7. Протолитическое равновесие
- •Термодинамика растворения
- •Растворение газов в жидкостях. Закон Генри
- •Давление насыщенного пара растворителя. Закон Рауля
- •Кипение и замерзание растворов
- •6.2. Водные растворы электролитов
- •Степень электролитической диссоциации
- •Слабые электролиты. Константа диссоциации
- •Ионное произведение воды
- •Водородный показатель
- •Произведение растворимости
- •8. Комплексные соединения
- •Примеры реакций комплексообразования
- •Практическое применение комплексных соединений
- •9. Химическая кинетика и химическое равновесие
- •9.1. Скорость химических реакций
- •9.2. Зависимость скорости химических реакций от условий их протекания
- •9.3. Обратимые химические реакции. Химическое равновесие
- •9.4. Условия смещения химического равновесия. Принцип ле шателье
- •10. Окислительно-восстановительные реакции
- •10.1. Общая характеристика
- •10.2. Основные положения теории окислительно-восстановительных реакций
- •10.3. Классификация окислительно-восстановительных реакций
- •10.4. Важнейшие восстановители и окислители
- •Важнейшие окислители и восстановители
- •10.5. Составление уравнений окислительно-восстановительных реакций.
- •Метод электронного баланса
- •Метод электронно-ионного баланса (Метод полуреакций)
- •Достоинства метода полуреакций:
- •10.6. Влияние среды на характер протекания окислительно-восстановительных реакций
- •Правила окислительно-восстановительных реакций при разных значениях рН среды:
- •10.7. Окислительно-восстановительный потенциал
- •10.8. Понятие электролиза.
- •10.9. Электролиз расплавов Электролиз расплава хлорида натрия
- •Электролиз расплава гидроксида калия
- •10.10. Электролиз водных растворов электролитов
- •Ряд стандартных электродных потенциалов металлов
- •Последовательность выделения металлов на катоде
- •10.11. Количественное описание электролиза. Законы фарадея
- •10.12. Применение электролиза
- •7. Электрохимия
- •7.1. Основные понятия
- •7.2. Гальванический элемент Даниэля1
- •7.3.Электродвижущая сила гальванического элемента
- •7.4. Потенциалы электродов
- •2. Растворимость кислот, оснований и солей в воде
- •3. Относительные электроотрицательности атомов химических элементов х (по Полингу)
Направленность ковалентной связи и пространственная конфигурация молекул
Направленность ковалентных связей определяет пространственную конфигурацию молекул. Если в состав молекулы входят два атома и перекрывание их орбиталей происходит вдоль линии, соединяющей ядра атомов, то форма такой молекулы является линейной, а связи в молекуле расположены под углом 180°. Такую же форму имеют молекулы в случае sp-гибридизации орбиталей, например, гидрида или хлорида бериллия ВеН2 или BeCl2:
Н Ве Н
В случае sp2-гибридизации молекула, например, гидрида алюминия AlH3 или хлорида бора BCl3 имеет форму правильного треугольника, в котором угол между связями составляет 120°:
120º
В случае sp3-гибридизации форма молекулы, например, метана СН4 или четыреххлористого углерода является тетраэдрической; угол между связями равен 109°28':
Полярные и неполярные молекулы
В зависимости от характера распределения электронной плотности между атомами в молекуле различают полярные и неполярные молекулы.
В неполярных молекулах центры тяжести положительного и отрицательного зарядов совпадают.
Полярные молекулы представляют собой диполи, для оценки полярности которых используют электрический момент диполя молекулы:
= ℓ ∙ δ,
(5)
где ℓ − длина диполя молекулы;
δ − модуль (величина) заряда диполя молекулы.
Для
двухатомной молекулы электрический
момент диполя связи
совпадает с электрическим моментом
диполя молекулы
(
)
Электрический момент диполя многоатомной молекулы является векторной величиной и представляет собой геометрическую сумму электрических моментов диполей связей, входящих в молекулу.
1.4. Межмолекулярные взаимодействия
Молекула − химически устойчивое и электрически нейтральное образование атомов. Однако химическая устойчивость отдельной молекулы относительна и проявляется на расстояниях, значительно превышающих размеры самой молекулы.
Уже на расстоянии порядка 1 нм1 между молекулами возникают силы притяжения − ван-дер-ваальсовы силы, однако при этом их электронные облака не перекрываются и химическая связь не образуется. На расстояниях значительно меньших, чем 1 нм возможны перекрывания электронных облаков с образованием новых молекул. Возникающие при этом химические связи могут иметь различную прочность. Относительно малую прочность имеют водородные связи; более высокую прочность имеют ковалентные связи между молекулами, образованными по донорно-акцепторному механизму.
Слабое взаимодействие между электронейтральными молекулами на расстояниях, значительно превосходящих их размеры, было впервые экспериментально обнаружено Ван-дер-Ваальсом2. Этим силам приписывают электростатическую природу и обычно выделяют три их составляющие: ориентационную, индукционную и дисперсионную.
Ориентационная (диполь-дипольная) составляющая представляет собой электростатическое взаимодействие соответствующим образом ориентированных диполей, то есть полярных молекул. Энергия ориентационного взаимодействия возрастает с увеличением электрического момента диполя молекулы и уменьшается с ростом температуры, так как тепловое движение молекул нарушает ориентацию диполей и соответственно снижает энергию их взаимодействия.
Эта составляющая ван-дер-ваальсовых сил проявляется только в системе, состоящей из полярных молекул.
Индукционная составляющая проявляется в системах, состоящих из полярных и неполярных молекул. Под действием электрического поля полярной молекулы в неполярной молекуле происходит наведение (индукция) электрического поля, то есть неполярная молекула поляризуется под действием электрического поля полярной молекулы. Энергия индукционного взаимодействия возрастает, с ростом электрического момента диполя полярной молекулы, но не зависит от температуры, поскольку наведение диполя в неполярной молекуле определяется суммарным электрическим полем окружающих её полярных молекул, то есть наведение диполя в неполярной молекуле происходит при любой пространственной ориентации молекул.
Межмолекулярное взаимодействие не исчерпывается ориентационной и индукционной составляющими. Известно большое количество веществ, которые могут быть получены в конденсированном (жидком или твёрдом) состоянии.Это одноатомные благородные газы (Не, Ne, Ar, Kr, Xe, Rn), а также простые (водород Н2, азот N2, кислород О2) и сложные вещества (диоксид углерода СО2, метан СН4, бензол С6Н6 и др. , молекулы которых неполярны.
Возникновение взаимодействия между подобными атомами и молекулами было объяснено физиком-теоретиком Фрицем Лондоном (модель Лондона). Он показал, что электростатическое отталкивание между электронами двух атомов или молекул снижается, если движение электронов в них происходит таким образом, что электроны всё время оказываются максимально удалёнными друг от друга. При таком согласованном движении электронов каждый из атомов представляет собой «мгновенный» диполь, положительный полюс которого расположен в ядре атома, а отрицательный − в точке нахождения электрона. При таком согласованном движении электронов «мгновенные» диполи ориентируются разноимённо заряженными концами, в результате чего происходит их электростатическое притяжение.
Модель Лондона позволила определить среднюю статистическую величину всех подобных взаимодействий, получившую название дисперсионной составляющей ван-дер-ваальсовых сил, которая действует между любыми атомами или молекулами независимо от их строения.
Энергия дисперсионной составляющей возрастает с увеличением соответственно эффективного радиуса или размера взаимодействующих атомов или молекул, поскольку при этом растёт величина их поляризуемости.
Все составляющие ван-дер-ваальсовых сил обратно пропорциональны расстоянию в шестой степени между взаимодействующими молекулами. На малых расстояниях между молекулами, когда электростатическое отталкивание атомных ядер и электронов превалирует над электростатическим притяжением, проявляется действие сил отталкивания. На существование сил отталкивания указывает малая сжимаемость жидкостей и твёрдых тел. Лондон установил, что силы отталкивания обратно пропорциональны расстоянию между молекулами в двенадцатой степени.
Таким образом, полная энергия межмолекулярного взаимодействия может быть представлена в виде алгебраической суммы двух слагаемых:
Ем.м.
= −
,
(6)
где а и b − соответственно константы, характеризующие энергию притяжения и отталкивания.
Ван-дер-ваальсовому взаимодействию свойственна невысокая энергия, соизмеримая с энергией теплового движения молекул, то есть она примерно на порядок ниже, чем энергия ковалентной связи. Эти силы отличаются от ковалентных сил отсутствием направленности и насыщаемости, и проявляются они на значительных расстояниях.
