Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ ХИМИЯ МЕТОДИЧКА (11.02.14).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.19 Mб
Скачать

5.5. Валентность атомов химических элементов. Поляризация ковалентной связи. Дипольный момент

Валентность атома – способность атома химического элемента образовывать определённое число химических (ковалентных) связей с другими атомами; число химических связей, которое данный атом образует с другими атомами в простом или сложном веществе.

Ковалентная связь может быть σ- или π-связью. σ-связьэто связь, образованная орбиталями, лежащими в плоскости молекулы. Образование π-связей происходит при перекрывании атомных орбиталей, расположенных перпендикулярно или под иными углами к σ-связи и параллельно друг другу.

Если в атоме имеется п неспаренных электронов и т неподелённых пар электроннов, то этот атом может образовать n + 2m ковалентных связей, и валентность атома при этом будет равна n + 2m.

Например, электронная формула, описывающая электронную конфигурацию электронейтрального атома хлора, имеет вид

17С1: 1s22s22p63s23p53d0.

Графически это можно изобразить следующим образом:

В атоме хлора имеется на внешнем энергетическом уровне три неподелённые электронные пары и один неспаренный электрон. Перед образованием химических связей атомы хлора, как и некоторых других химических элементов переходят в возбуждённое состояние, сопровождаемое увеличением числа неспаренных электронов. Возбуждённое состояние экспериментально наблюдать невозможно, т. к. оно гипотетическое.

Если взаимодействующие атомы отличаются по электроотрицательности, то образующаяся за счёт обобществления электронная пара смещается к более электроотрицательному атому, вызывая появление на нём отрицательного заряда. Более электроположительный атом, лишившись части своего электрона (электронного облака), приобретает некоторый положительный заряд, равный по величине отрицательному. Такие заряды получили название эффективных.

Например, в молекуле НF связывающая пара электронов смещена к атому фтора, вследствие чего на нём появляется отрицательный заряд, равный 0,43 доли заряда электрона. Понятие эффективного заряда не является строгим, так как разделить область перекрывания атомных орбиталей, т. е. область пространственного распределения зарядов между атомами, можно только условно. Явление смещения пары электронов химической связи к более электроотрицательному атому называют поляризацией ковалентной связи. Химические связи со смещённой связывающей парой электронов называются ковалентными полярными связями (они чаще всего встречаются в химических соединениях).

По мере выравнивания электроотрицательностей атомов галогенов и водорода химическая связь (см. табл. 3 приложения) становится всё менее полярной, и в молекуле НI её можно считать чисто ковалентной. В молекуле НF атом фтора не отрывает полностью электрон от атома водорода, и обобществлённая электронная пара лишь частично смещена к наиболее электроотрицательному атому фтора.

Электрический дипольный моментявляется мерой полярности ковалентной связи.

Диполь это система, состоящая из двух равных по величине, но противоположных по знаку зарядов, расположенных на некотором расстоянии друг от друга.

Дипольный момент ковалентной связи определяют по формуле:

,

где q – абсолютная величина (модуль) заряда, в Кл;

l – длина диполя (вектор, направленный из центра положительного заряда к центру отрицательного заряда), пм; величина l является межатомным расстоянием или длиной ковалентной связи.

Внесистемной единицей величины электрического дипольного момента служит Дебай1 (1 D = 3,33·10–30 Кл · м).

Если в молекуле центры тяжести эффективных положительных и отрицательных зарядов совпадают, то молекула будет неполярной (СО2, ВF3, СС14, SiВr4, СН4 и др.). Поэтому молекулы с симметричным расположением атомов являются неполярными, хотя ковалентные связи в них могут быть полярными. Двухатомные молекулы простых веществ, состоящие из одинаковых атомов, также являются неполярными (С12, Н2). В полярных молекулах Н2О и NН3 дипольные моменты соответственно равны 1,86 и 1,46 D. Значения дипольных моментов этих молекул свидетельствуют о смещении электронных пар ковалентных связей к атомам кислорода и азота. Чем больше дипольный момент двухатомной молекулы, тем более ионный характер приобретает её ковалентная (точнее ионно-ковалентная) связь.