- •1. Информатика как наука и учебный предмет. Вклад отечественных и зарубежных ученых в становление информатики как науки.
- •2. Модель. Понятие формализации. Этапы моделирования.
- •1. Предмет методики преподавания информатики. Методическая система обучения информатике в школе, общая характеристика ее основных компонентов.
- •2. Сравнение растровой и векторной компьютерной графики.
- •I. Растровая графика.
- •II. Векторная графика.
- •1. Краткая характеристика особенностей изучения информатики на разных уровнях обучения в школе.
- •2. Цветовая модель rgb.
- •1. Формирование основных понятий в содержании образования по информатике.
- •2. Понятие мультимедиа.
- •1. Анализ аппаратного и программно-методического обеспечения школьной информатики.
- •2.Компьютерная графика. Классификация. Примеры.
- •1. История становления информатики как науки и как школьного учебного предмета.
- •2. Понятие «визуализация». Особенности инфографики. Инструменты создания визуализаций.
- •Инструменты для создания простой инфографики и визуализации данных
- •1Piktochart
- •2Easel.Ly
- •1. Место курса информатики в системе учебных дисциплин. Система межпредметных связей информатики.
- •2. Информационные системы. Классификации по типу хранимых данных и по функциональному признаку.
- •1. Основные содержательные линии в курсе информатики. Принципы построения содержания школьного курса информатики.
- •2. Системы счисления. Правила перевода из одной системы счисления в другую.
- •1. Анализ программного обеспечения в курсе школьной информатики.
- •2. Компьютер как универсальное устройство обработки информации: поколения компьютеров.
- •1. Обзор методов обучения информатике.
- •1.Методы стимулирования и мотивации учебно-познавательной
- •2.Методы организации и осуществления учебных действий и операций:
- •3.Методы контроля и самоконтроля за эффективностью учебно-
- •2. Презентации. Правила создания презентации. Облачные сервисы по созданию презентаций.
- •1. Кабинет информатики: нормативное обеспечение (журнал тб, СанПин, др.); оборудование; организации работы; санитарно-гигиенические требования к организации работы в кабинете информатики.
- •2. Алгоритм, свойства алгоритмов.
- •1. Содержание и организация внеклассной работы по информатике. Проектная деятельность по информатике.
- •2. Представление графической информации. Форматы графических файлов.
- •1. Тематическое и поурочное планирование по курсу информатики.
- •2. Правила создания учебных визуализаций. Выбор цвета, положение на слайде, концентрация информации. Программное обеспечение, ориентированное на работу с визуальной информацией.
- •1. Методика обучения сетевым информационным технологиям. Виды организации локальной сети.
- •2. Интернет: генезис, сущность, тенденции развития.
- •1. Функции проверки и оценки в учебном процессе. Формы тестовых заданий.
- •2. Цветовая модель cmyk.
- •1. Использование методов и средств информатики при изучении других предметов.
- •2. Базы данных. Классификации баз данных.
- •1. Профильное обучение информатике на уровне среднего общего образования.
- •2. Моделирование и формализация описания реальных объектов и процессов.
- •1. Предмет методики обучения информатике. Методическая система обучения информатике в школе, общая характеристика ее основных компонентов.
- •2. Установка и загрузка ос.
- •1. Метод проектов в информатике. Примеры проектов по содержанию предмета информатики.
- •2. Файлы и файловая система.
- •1. Образовательные возможности сетевых сервисов в курсе информатики. Примеры сетевых сервисов и электронных учебных материалов, созданных на их основе.
- •2. Законы Грассмана. Цветовые модели.
- •1. Содержательная линия «Информации и информационных процессов». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Модель. Классификации моделей.
- •1. Содержательная линия «Компьютер». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Классификации систем счисления.
- •1. Содержательная линия «Формализации и моделирования». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Алгоритм, способы записи алгоритмов. Блок-схемы.
- •1. Содержательная линия «Информационные технологии». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Алгоритм. Исполнители алгоритма. Среда исполнителя.
- •1. Содержательная линия «Алгоритмизация и программирование». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Графические редакторы: растровые и векторные.
- •I. Растровая графика.
- •II. Векторная графика.
- •1. Содержательная линия «Социальная информатика». Ключевые понятия данной линии и методика обучения на разных ступенях школьного курса информатики.
- •Основные задачи учебного курса «Социальная информатика»:
- •2. Компьютерные сети. Модель «клиент-сервер».
- •1. Маркетинговое планирование
- •2. Техническое планирование
- •3. Дизайн сайта
- •4. Верстка
- •5. Система управления сайтом (cms)
- •6. Наполнение сайта
- •7. Тестирование и выкладывание
- •1. Основные подходы к введению понятия «информация» (вероятностный, коммуникативный, функциональный, кибернетический, атрибутивный).
- •2. Характеристика основных служб и сервисов глобальной компьютерной сети.
- •Обзор организационных форм обучения информатике.
- •Компьютерные сети. Классификации. Основные характеристики.
- •1. Формирование школьной информационно-коммуникационной образовательной среды. Компоненты и их характеристика.
- •2. Системы счисления по основанию 2 и 10. Арифметические операции в системе счисления по основанию 2.
- •1. Дидактические особенности компьютерных средств обучения (мультимедийное оборудование, электронные образовательные ресурсы).
- •2. Основы языка гипертекстовой разметки html.
- •1. Электронные образовательные ресурсы в информационной образовательной среде школы.
- •2. Основы веб-конструирования.
2.Компьютерная графика. Классификация. Примеры.
Аппаратное обеспечение компьютера - это все электронные и механические устройства компьютера.
В растровой графике изображение представляется множеством точек (пикселей), размещаемых по фиксированным строкам (растрам). Она, в основном, используется при работе с картинками, полученными при фотографии, киносъемке, сканировании, поэтому главным назначениям средств работы с такой графикой можно назвать редактирование изображений. Примером приложений для работы с растровой графикой можно назвать программу AdobePhotoshop (с форматом файлов .pcd), редактор Paint (.bmp). Для сканированных изображений широко известен формат .tiff, а для передачи растровых изображений по сети Internet наиболее известными являются форматы .gif и .jpg.
Растровая графика при реализации требует большого объема дисковой и оперативной памяти, т.к. при хранении и обработке изображения кодируется каждый пиксель. Качество растрового изображения зависит от разрешающей способности экрана (например, 800х600 или 1152х864 пикселей). При изменении разрешающей способности изображение может искажаться.
Векторная графика предназначена для создания изображений в виде совокупности линий (векторов). Такие картинки широко используются в редакционной, оформительской, чертежной, проектно-конструкторской работе, в картографии. Примером приложений, работающих с векторной графикой, можно назвать AdobeIllustrator, AutoCAD, CorelDraw и др. Наиболее известными форматами векторных изображений являются: .eps, .dcs, .pdf, .cdr, .cmx.
Билет 6.
1. История становления информатики как науки и как школьного учебного предмета.
Информатика – это наука, изучающая все аспекты получения, хранения, преобразования, передачи и использования информации. Под понятием информатики объединяют ряд научных направлений, исследующих разные стороны одного и того же объекта – информации. Материальная база информатики связана со многими разделами физики, с химией и особенно – с электроникой и радиотехникой. Информатизация общества – организованный социально-экономический и научно технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления, организаций, общественных объединений на основе формирования и использования информационных ресурсов. Термин информатика возник в 60-х гг. во Франции для названия области, занимающейся автоматизированной обработкой информации с помощью электронных вычислительных машин. Французский термин informatigue (информация) и automatigue (автоматика) и означает «информационная автоматика или автоматизированная переработка информации». В англоязычных странах этому термину соответствует синоним computer science (наука о компьютерной технике).
Выделение информатики как самостоятельной области человеческой деятельности в первую очередь связано с развитием компьютерной техники. Причём основная заслуга в этом принадлежит микропроцессорной технике, появление которой в середине 70-х гг.
Часто возникает путаница в понятиях «информатика» и «кибернетика». Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.
Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.
Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Поэтому может сложиться впечатление об информатике как о более ёмкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники, что, несомненно, сужает её, казалось бы, обобщённый характер. Между этими двумя дисциплинами провести чёткую границу не представляется возможным в связи с её размытостью и неопределённостью, хотя существует довольно распространённое мнение, что информатика является одним из направлений кибернетики.
Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без неё. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники. Кибернетика и информатика, внешне очень похожие дисциплины.
История внедрения курса информатики в средние учебные заведения
В развитии отечественного школьного курса информатики выделяется несколько этапов, связанных со сменой парадигм преподавания курса и, соответственно, изменениями в методической системе обучения информатике.
На первом этапе (с середины 1950-х гг. до 1985 г.) в рамках производственного обучения в школе и факультативных курсов возникло два направления обучения кибернетике и информатике в средней школе:
1) общеобразовательное, связанное с изучением информационных процессов, принципов строения и функционирования самоуправляемых систем различной природы, автоматической обработкой информации
2) прикладное в рамках дифференциации обучения в старших классах школы с производственным обучением, основанное на изучении программирования и устройства ЭВМ
1950-е годы: изучение программирования в ряде школ г.Новосибирска (А.П.Ершов и его сотрудники).
1960-е годы: подготовка программистов в московских школах с математической специализацией.
1970-е годы: подготовка школьников по специальностям, связанным с ЭВМ (Москва, Ленинград, Новосибирск). Министерство образования рекомендует программу факультативного курса «Основы кибернетики» (В.С.Леднев, А.А.Кузнецов).
Конец 70-х годов: обоснование необходимости включения в структуру общего образования курсов, отражающих науки, изучающие информационные, кибернетические стороны мира (В.С. Леднев); разработка концепции школьной информатики (А.П.Ершов, Г.А.Звенигородский, Ю.А.Первин).
1982 год: решение Министерства просвещения СССР о введении калькуляторов в учебный процесс школы.
1984 год: разработка основных направлений реформы общеобразовательной и профессиональной школы
1985 год: разработка программы предмета «Основы информатики и вычислительной техники».
Второй этап (1985 г. – конец 1980-х гг.) характеризуется включением в учебные планы школ обязательного курса «Основы информатики и вычислительной техники» (в 1985 г.). Один из его идеологов – А.П.Ершов, который видел цель курса в обеспечении компьютерной грамотности школьников, под которой понималось умение программировать («Программирование – вторая грамотность», А.П. Ершов). Соответственно, основными понятиями курса были «компьютер», «исполнитель», «алгоритм», «программа». Для преподавания курса использовался первый школьный учебник по информатике, составленный авторским коллективом под руководством А.П. Ершова и В.М. Монахова.
1 сентября 1985 г началось преподавание основ информатики и ВТ в массовой школе. Обучение информатике проходило под лозунгом, выдвинутым академиком А.П. Ершовым, «Программирование – вторая грамотность». Отечественная техника, выпускаемая в это время, имела программное обеспечение в основном для обучения программированию.
Третий этап (конец 80-х – начало 90-х гг.) связан с использованием трех учебников, составленных разными авторскими коллективами. К концу 80-х годов возрастает потребность школ в учебниках и учебных программах по информатике, ориентированных на использование ЭВМ. В результате проведенного в 1987 году конкурса, для преподавания информатики в школе был рекомендован учебник ОИВТ, написанный авторским коллективом под руководством В.А.Каймина. Позднее школам были рекомендованы еще два учебника, созданные авторскими коллективами во главе с А.Г.Кушниренко и А.Г.Гейном.
Четвертый этап в истории информатики в школе (1990-е гг.) связан с целым рядом новых обстоятельств. В стране получила распространение компьютерная техника зарубежного производства. Отдельные школы стали оснащаться современными компьютерами, вследствие чего возникла проблема смещения акцента в преподавании курса информатики с обучения программированию на прикладной и технологический аспекты. Возникла необходимость и возможность введения в учебный план пропедевтического курса информатики. Появившиеся возможности приобретения и установки мультимедийных программ позволили использовать компьютер на уроках гуманитарного цикла, при изучении иностранных языков, музыки, рисования и т.д.
Пятый этап (с конца 90-х гг. по настоящее время.) характеризуется интенсивным осмыслением накопленного опыта вместе с тенденцией возвращения к общеобразовательным принципам, сформулированным еще в 60-е годы.
Современное профессиональное образование должно принимать во внимание и внедрять новейшие достижения в области информационных технологий и правильно их использовать. Профессиональная школа обязана готовить студентов к действительности, которая, безусловно, потребует от них, по крайней мере, не одной смены профессиональных занятий в течение жизни. Методика преподавания в этом отношении также должна адекватно реагировать на изменения, быть гибкой как в рамках учебного заведения, так и в пределах изучаемых дисциплин.
Технологические инновации в учебных заведениях должны выражаться во включении элементов информационных технологий в изучение большинства основных дисциплин, а не во включении отдельных компьютерных дисциплин в учебный план. Необходимость данного шага очевидна всем, кто, так или иначе, соприкасается с изменениями, связанными с подготовкой специалистов среднего звена.
