- •1. Информатика как наука и учебный предмет. Вклад отечественных и зарубежных ученых в становление информатики как науки.
- •2. Модель. Понятие формализации. Этапы моделирования.
- •1. Предмет методики преподавания информатики. Методическая система обучения информатике в школе, общая характеристика ее основных компонентов.
- •2. Сравнение растровой и векторной компьютерной графики.
- •I. Растровая графика.
- •II. Векторная графика.
- •1. Краткая характеристика особенностей изучения информатики на разных уровнях обучения в школе.
- •2. Цветовая модель rgb.
- •1. Формирование основных понятий в содержании образования по информатике.
- •2. Понятие мультимедиа.
- •1. Анализ аппаратного и программно-методического обеспечения школьной информатики.
- •2.Компьютерная графика. Классификация. Примеры.
- •1. История становления информатики как науки и как школьного учебного предмета.
- •2. Понятие «визуализация». Особенности инфографики. Инструменты создания визуализаций.
- •Инструменты для создания простой инфографики и визуализации данных
- •1Piktochart
- •2Easel.Ly
- •1. Место курса информатики в системе учебных дисциплин. Система межпредметных связей информатики.
- •2. Информационные системы. Классификации по типу хранимых данных и по функциональному признаку.
- •1. Основные содержательные линии в курсе информатики. Принципы построения содержания школьного курса информатики.
- •2. Системы счисления. Правила перевода из одной системы счисления в другую.
- •1. Анализ программного обеспечения в курсе школьной информатики.
- •2. Компьютер как универсальное устройство обработки информации: поколения компьютеров.
- •1. Обзор методов обучения информатике.
- •1.Методы стимулирования и мотивации учебно-познавательной
- •2.Методы организации и осуществления учебных действий и операций:
- •3.Методы контроля и самоконтроля за эффективностью учебно-
- •2. Презентации. Правила создания презентации. Облачные сервисы по созданию презентаций.
- •1. Кабинет информатики: нормативное обеспечение (журнал тб, СанПин, др.); оборудование; организации работы; санитарно-гигиенические требования к организации работы в кабинете информатики.
- •2. Алгоритм, свойства алгоритмов.
- •1. Содержание и организация внеклассной работы по информатике. Проектная деятельность по информатике.
- •2. Представление графической информации. Форматы графических файлов.
- •1. Тематическое и поурочное планирование по курсу информатики.
- •2. Правила создания учебных визуализаций. Выбор цвета, положение на слайде, концентрация информации. Программное обеспечение, ориентированное на работу с визуальной информацией.
- •1. Методика обучения сетевым информационным технологиям. Виды организации локальной сети.
- •2. Интернет: генезис, сущность, тенденции развития.
- •1. Функции проверки и оценки в учебном процессе. Формы тестовых заданий.
- •2. Цветовая модель cmyk.
- •1. Использование методов и средств информатики при изучении других предметов.
- •2. Базы данных. Классификации баз данных.
- •1. Профильное обучение информатике на уровне среднего общего образования.
- •2. Моделирование и формализация описания реальных объектов и процессов.
- •1. Предмет методики обучения информатике. Методическая система обучения информатике в школе, общая характеристика ее основных компонентов.
- •2. Установка и загрузка ос.
- •1. Метод проектов в информатике. Примеры проектов по содержанию предмета информатики.
- •2. Файлы и файловая система.
- •1. Образовательные возможности сетевых сервисов в курсе информатики. Примеры сетевых сервисов и электронных учебных материалов, созданных на их основе.
- •2. Законы Грассмана. Цветовые модели.
- •1. Содержательная линия «Информации и информационных процессов». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Модель. Классификации моделей.
- •1. Содержательная линия «Компьютер». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Классификации систем счисления.
- •1. Содержательная линия «Формализации и моделирования». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Алгоритм, способы записи алгоритмов. Блок-схемы.
- •1. Содержательная линия «Информационные технологии». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Алгоритм. Исполнители алгоритма. Среда исполнителя.
- •1. Содержательная линия «Алгоритмизация и программирование». Ключевые понятия данной линии и методика обучения на разных уровнях школьного курса информатики.
- •2. Графические редакторы: растровые и векторные.
- •I. Растровая графика.
- •II. Векторная графика.
- •1. Содержательная линия «Социальная информатика». Ключевые понятия данной линии и методика обучения на разных ступенях школьного курса информатики.
- •Основные задачи учебного курса «Социальная информатика»:
- •2. Компьютерные сети. Модель «клиент-сервер».
- •1. Маркетинговое планирование
- •2. Техническое планирование
- •3. Дизайн сайта
- •4. Верстка
- •5. Система управления сайтом (cms)
- •6. Наполнение сайта
- •7. Тестирование и выкладывание
- •1. Основные подходы к введению понятия «информация» (вероятностный, коммуникативный, функциональный, кибернетический, атрибутивный).
- •2. Характеристика основных служб и сервисов глобальной компьютерной сети.
- •Обзор организационных форм обучения информатике.
- •Компьютерные сети. Классификации. Основные характеристики.
- •1. Формирование школьной информационно-коммуникационной образовательной среды. Компоненты и их характеристика.
- •2. Системы счисления по основанию 2 и 10. Арифметические операции в системе счисления по основанию 2.
- •1. Дидактические особенности компьютерных средств обучения (мультимедийное оборудование, электронные образовательные ресурсы).
- •2. Основы языка гипертекстовой разметки html.
- •1. Электронные образовательные ресурсы в информационной образовательной среде школы.
- •2. Основы веб-конструирования.
1. Основные подходы к введению понятия «информация» (вероятностный, коммуникативный, функциональный, кибернетический, атрибутивный).
Информация – это сведения об окружающем нас мире.
Определить понятие “количество информации” довольно сложно. В решении этой проблемы существуют два основных подхода. В конце 40-х годов XX века один из основателей кибернетики, американский математик Клод Шенон, предложил вероятностный подход к измерению количества информации.
Сообщение, уменьшающее неопределенность знаний человека в два раза, несет для него 1 единицу информации. В качестве элементарной единицы измерения количества информации принят 1 бит.
Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации, заключенное в этом сообщении , - х бит и число N связаны формулой Хартли
x=log2N.
Например, сообщение о результате бросания монеты (количество равновероятных исходов равно 2) содержит х=1 бит информации (2х = 2)
Понятие информации, кибернетика, теория информации, информатика возникли не по прихоти ученых, а исходя из военных потребностей развития связи, управления стрельбой, радиолокации и шифрования в 40-х гг. XXв., а также в связи с изобретением электронных компьютеров. Соответственно, основными функциями информации в тот период полагались управление и связь. Реализовать эти функции информация должна была через свои особые формы – команды и данные, передаваемые по каналам управления и связи. Полагалось (и не без основания), что большие количества материи и энергии управляются малыми количествами энергии, несущими информацию. Такую информацию принято называть функциональной информацией, а соответствующий подход к понятию информации – функциональным подходом.
Функциональная информация передается в виде сообщений посредством сигналов, имеющих полевую природу (электрическую, электромагнитную, гравитационную и др.). При этом канал связи инвариантен (безразличен) к смыслу передаваемых сообщений. Так, если вместо сообщения "Мрак" будет передано "Марк", количество информации в сообщении останется прежним, и сигналы-носители "бесстрастно" перенесут искаженное сообщение от передатчика к приемнику, как почтальоны переносят письма, не интересуясь их содержанием. Точно так же случится при передаче "1" вместо "0". Но канал управления чувствителен к смыслу сообщений, ибо смысл (содержание) влияет на выбор траектории управления – "1" может означать выбор одной траектории, а "0" – другой.
Кибернетика – наука об общих законах управления и связи в природе и обществе. Основал кибернетику в конце 1940-х гг. американский ученый Норберт Винер. Кибернетика имеет дело со сложными системами, живыми организмами, общественными системами. Но она не стремится разобраться в их внутреннем механизме. Кибернетику интересуют процессы взаимодействия между такими системами или их компонентами.
Для описания сложных систем в кибернетике используется модель “черного ящика”. Он так называется потому, что неизвестно, что происходит внутри него. И главные его характеристики – входная и выходная информация. Информация между кибернетическими системами передается в виде некоторых последовательностей сигналов.
Информационные обмены происходят всюду: между людьми, между работающими совместно техническими устройствами, между различными органами человека или животного и т.п. Во всех этих случаях информация передается в виде последовательностей сигналов разной природы: акустических, световых, графических и др.
С точки зрения передаваемых сигнальных последовательностей. В частности, любой текст на каком-то языке есть последовательность букв или звуков, которые можно рассматривать как графически или акустические сигналы.
Передача сигналов требует определенных материальных и энергетических затрат. Например, при использовании электрических связи нужны провода и источники электроэнергии. Однако содержание сигналов не зависит от затрат вещества или энергии. В последовательностях сигналов закодированы содержание определенные смысловые символы, в которых и заключается содержание сигналов. Эти символы могут быть на каком-то языке или целыми понятиями.
Можно сказать, что информация – отражение реального (материального) мира, выражаемое в виде сигналов.
Коммуникативный подход – рассматривает информацию как сферу общенаучной рефлексии. Коммуникативный подход рассмотрения информации можно отнести к бытовым, житейским понятиям. В бытовом представлении информация есть знания, сведения, сообщения и т.д.
Атрибутивный подход полагает информацию всеобщим свойством материи, проявляющимся во взаимодействии, т. е. неотъемлемым, вечно существующим атрибутом всех систем объективной реальности, организующим началом в живой и неживой природе [3, 7, 8]. Такой подход более близок к философскому пониманию информации.
«Сущность атрибутивного подхода заключается в том, что информация предполагается неотъемлемым свойством (атрибутом) материи и поэтому она может проявлять себя во всех объектах, процессах и явлениях как живой, так и неживой природы» [21, с. 64]. От сущности атрибутивного подхода к информации К.К. Колин переходит к физической сущности феномена информации, давая определение: «Информация, в широком понимании этого термина, представляет собой объективное свойство реальности, которое проявляется в неоднородности (асимметрии) распределения материи и энергии в пространстве и времени, в неравномерности протекания всех процессов, происходящих в мире живой и неживой природы, а также в человеческом обществе и сознании» [21, с. 65]. Детальный анализ этого подхода изложен в работе [46]. Здесь можно отметить только некоторые противоречия, возникающие при принятии этого подхода. 1. Утверждается: «Понятия «материя», «энергия» и «информация» являются равнозначными по своему уровню общенаучными философскими категориями» [21, с. 69]. Это утверждение противоречит уже цитируемому выше положению: «информация предполагается неотъемлемым свойством (атрибутом) материи». Объект не может быть равнозначен своему свойству! 2. Утверждается: «В однородных средах и в равномерно протекающих процессах информация отсутствует»
