- •Вопрос 1. Составные части задачи. Этапы решения задачи и приёмы выполнения этих этапов.
- •Этапы решения задачи.
- •V. Проверка решения задачи.
- •1.Прикидка
- •4.Составление и решение задач, обратных данной.
- •Вопрос 2. Методы и способы решения текстовых задач. Моделирование в процессе решения задач.
- •Моделирование в процессе решения текстовых задач
- •Вопрос 3. Задачи «на движение».
- •Встречное движение.
- •Движение в противоположных направлениях:
- •Движение по воде.
- •Вопрос 4.
- •Основные приёмы решения задач на нахождение четвёртой пропорциональной величины:
- •1 Способ.
- •3 Способ.( через кратное отношение заданных однородных величин)
- •Задачи на производительность труда.
- •2)Задачи на нахождение стоимости.
- •Вопрос 5. Комбинаторные задачи. Правила суммы и произведения. Размещения и сочетания.
- •Вопрос 6. Приёмы организации деятельности учащихся при формировании умения решать задачи (преобразование данной задачи, сравнение, задачи с недостающими и с избыточными данными, моделирование)
- •1.Перевод словесного текста на язык математики (построение математической модели)
- •2.Математическое решение
- •3.Анализ полученных результатов.
- •Вопрос 7. Формирование универсальных учебных действий при решении текстовых задач.
- •Вопрос 8. Различные подходы в обучении решению простых задач (с ориентацией на их виды и без неё).
- •1. Составление условия к данному вопросу.
- •4.Использование задач с недостающими данными
- •5.Составление задач, обратных данной.
- •6.Решение нестандартных задач (логических, комбинаторных, на смекалку).
- •Вопрос 9. Простые задачи на усвоение смысла арифметических действий.
- •Вопрос 10. Простые задачи на сложение и вычитание.
- •Вопрос 11. Простые задачи на умножение и деление.
- •Вопрос 12. Формирование понятий «больше» («меньше») на несколько единиц. Задачи на разностное сравнение.
- •Вопрос 13. Формирование понятий «больше» («меньше») в несколько раз. Задачи на кратное сравнение.
- •Вопрос 14. Простые задачи на нахождение неизвестного компонента арифметического действия. Обратная задача.
- •Вопрос 15. Методика ознакомления школьников с понятием «Составная задача».
- •3) Постановка вопроса к данному условию.
- •4) Выработка умений решать простые задачи, входящие в составную.
- •Вопрос 16. Методика работы над решением составной задачи.
- •Вопрос 17.
- •17.Задачи на нахождение четвёртого пропорционального. Задачи с пропорциональными величинами.
- •Методические приёмы обучения младших школьников решению задач с пропорциональными величинами
- •Задачи на нахождение четвёртого пропорционального.
- •Вопрос 18. Задачи на пропорциональное деление.
- •Вопрос 19. Задачи на нахождение неизвестных по двум разностям.
- •Вопрос 20. Методика обучению решению задач, связанных с «движением».
- •Задачи на движение двух тел в противоположных направлениях
- •2 Способ.
- •Задачи на движение двух тел вдогонку
- •1 Способ
- •2 Способ
- •Задачи на движение двух тел с опережением
- •Вопрос 21. Нестандартные задачи.
- •Число пар на множестве из трёх-пяти элементов (число сочетаний по 2)
Задачи на нахождение четвёртого пропорционального.
В задачах на нахождение четвёртого пропорционального даны три величины, связанные прямо или обратно пропорциональной зависимостью. Одна из них постоянная, две – переменные. При этом даны два значения одной переменной величины и одно из соответствующих значений второй переменной величины. Второе значение величины является искомым. С каждым из групп пропорциональных величин можно составить 6 видов задач на четвёртое пропорциональное. 4 вида с прямо пропорциональной зависимостью и 2 вида с обратной.
Группы величин:
Цена, количество, стоимость;
Масса одного предмета, число предметов, общая масса;
Ёмкость одного сосуда, число сосудов, общая ёмкость;
Выработка в единицу времени, время работы, общая выработка;
Расход материи на одну вещь, число вещей, общий расход материи;
Скорость, время, расстояние;
Длина, ширина, площадь;
Урожай с единицы площади, площадь, весь урожай.
Основной способ решения таких задач нахождение постоянного (приведение к единице), некоторые задачи можно решить через нахождение кратного отношения однородных величин.
Пример
№1. Поезд проходит 320 км за 5 ч. Какое расстояние он пройдёт за 10 часов, двигаясь с этой же скоростью?» Учащиеся составляют краткую запись задачи в виде таблицы и анализируют:
-
s
v
t
I
320 км
Одинаковая
5 ч
II
? км
10 ч
Чтобы найти расстояние, пройденное поездом, надо его скорость умножить на время движения. Время известно по условию – 10 ч. Скорость движения поезда можем найти, зная, что за 5 ч он прошёл 320 км. Поэтому по формуле пути скорость поезда равна (320: 5) км/ч.
Решение
1-й
способ:(320: 5)
=64
10
= 640 (км) 2-й способ:320
(10:5)=320
=640
(км)
Ответ: за 10 ч поезд прошёл 640 км.
Вопрос 18. Задачи на пропорциональное деление.
В задачах на пропорциональное деление даны три величины, связанные прямо или обратно пропорциональной зависимостью. Одна из них постоянная, две – переменные. При этом даны два значения одной переменной величины и сумма соответствующих значений другой переменной величины. Слагаемые этой суммы являются искомыми. С каждой из групп можно составить 6 видов задач на пропорциональное деление. В начальной школе изучаются только 4 из них, с прямой пропорциональной зависимостью. Все задачи на пропорциональное деление решаются способом нахождения постоянной величины.
Пример
Для сада купили в питомнике 14 кустов красной и чёрной смородины по одинаковой цене. За красную смородину заплатили 250 руб., а за чёрную – 450 руб. Каких кустов купили больше и на сколько?
-
цена
количество
стоимость
Красная смородина
Одинаковая
? к. на ? к.
больше
250 руб.
Чёрная смородина
? к
450 руб.
К + Ч
14 к.
(250+450) руб.
Чтобы ответить на главный вопрос задачи, надо узнать, сколько было кустов красной и чёрной смородины и из большего числа вычесть меньшее. Количество кустов каждого вида можно найти, разделив их стоимость кустов на их общее количество».
1) 250 + 450 = 700 (руб.) – общая стоимость кустов;
2) 700: 14 = 50 (руб.) – цена 1 куста смородины;
3) 250: 50 = 5 (к.) – купили красной смородины;
4) 450: 50 = 9 (к.) – купили чёрной смородины;
5) 9 – 5 = 4 (к.).
Ответ: на 4 куста больше чёрной смородины купили, чем красной.
