Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
САПР ТП - Конспект лекций.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.54 Mб
Скачать

14.2.3. Генерация коррелированных случайных чисел

До сих пор мы рассматривали наиболее простой случай применения генераторов независимых случайных чисел. В методах Монте-Карло часто требуется создавать случайные числа с определенной корреляцией. Приведем пример программы, создающей два вектора x1 и х2 одинакового размера и одним и тем же распределением, случайные элементы которых попарно коррелированы с коэффициентом корреляции R (листинг 14.12).

Листинг 14.12. Генерация попарно коррелированных случайных чисел

Результат действия программы для R=0.4 показан на рис. 14.13 (слева). Сравните полученную выборку с правым графиком, полученным для высокой корреляции (R=0.9) и с рис. 14.3 (см. разд. 14.1.1) для независимых данных, т. е. R=0.

Рис. 14.13. Псевдослучайные числа с корреляцией R=0.4 (листинг 14.12) и R=0.9

14.2.4. Ковариация и корреляция

Функции, устанавливающие связь между парами двух случайных векторов, называются ковариацией и корреляцией (или, по-другому, коэффициентом корреляции). Они различаются нормировкой, как следует из их определения (листинг 14.13).

  • согг(х) — коэффициент корреляции двух выборок;

  • cvar(x) — ковариация двух выборок;

    • x1, х2 — векторы (или матрицы) одинакового размера с выборками случайных данных.

Листинг 14.13. Расчет ковариации и корреляции (продолжение листинга 14.12)

14.2.5. Коэффициенты асимметрии и эксцесса

Коэффициент асимметрии задает степень асимметричности плотности вероятности относительно оси, проходящий через ее центр тяжести. Коэффициент асимметрии определяется третьим центральным моментом распределения. В любом симметричном распределении с нулевым математическим ожиданием, например нормальным, все нечетные моменты, в том числе и третий, равны нулю, поэтому коэффициент асимметрии тоже равен нулю.

Степень сглаженности плотности вероятности в окрестности главного максимума задается еще одной величиной — коэффициентом эксцесса. Он показывает, насколько острую вершину имеет плотность вероятности по сравнению с нормальным распределением. Если коэффициент эксцесса больше нуля, то распределение имеет более острую вершину, чем распределение Гаусса, если меньше нуля, то более плоскую.

Для расчета коэффициентов асимметрии и эксцесса в Mathcad имеются две встроенные функции.

  • kurt(x) — коэффициент эксцесса (kurtosis) выборки случайных данных х;

  • skew(x) — коэффициент асимметрии (skewness) выборки случайных данных X .

Примеры расчета коэффициентов асимметрии и эксцесса для распределения Вейбулла (см. рис. 14.10) приведены в листинге 14.14.

Листинг 14.14. Расчет выборочных коэффициентов асимметрии и экспресса

14.2.6. Другие статистические характеристики

В предыдущих разделах были рассмотрены встроенные функции, рассчитывающие наиболее часто используемые статистические характеристики выборок случайных данных. Иногда в статистике встречаются и иные функции, например, помимо арифметического среднего, применяются другие средние значения.

  • gmean(x) —геометрическое среднее выборки случайных чисел;

  • hmean(x) — гармоническое среднее выборки случайных чисел.

Математическое определение этих функций и пример их использования в Mathcad приведены в листинге 14.15.

Листинг 14.15. Вычисление различных средних значений