- •Содержание
- •Знакомство с Mathcad
- •1.3. Интерфейс пользователя
- •1.3.1. Меню
- •1.3.2. Панели инструментов
- •1.3.3. Настройка панели инструментов
- •1.3.4. Рабочая область
- •1.3.5. Строка состояния
- •1.4. Справочная информация
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.1.1. Управление документами
- •2.1.2. Создание документа на основе шаблона
- •2.1.3. Сохранение документа
- •2.1.4. Открытие существующего документа
- •2.1.5. Закрытие документа
- •2.2. Ввод и редактирование формул
- •2.2.1. Элементы интерфейса
- •2.2.2. Ввод формул
- •2.2.3. Перемещение линий ввода внутри формул
- •2.2.4. Изменение формул
- •2.2.5. Ввод символов, операторов и функций
- •2.2.6. Управление отображением некоторых операторов
- •2.3. Ввод и редактирование текста
- •2.3.1. Ввод текста
- •2.3.2. Редактирование текста
- •2.3.3. Импорт текста
- •2.3.4. Математические символы внутри текста
- •2.3.5. Гиперссылки
- •2.4. Правка документа
- •2.5. Печать документа
- •2.6. Посылка документа по электронной почте
- •Лекция 2. Автоматизация вычислений в MathCad. Типы данных
- •3.1. Переменные и функции
- •3.1.1. Определение переменных
- •3.1.3. Функции
- •3.1.4. Определение функции пользователя
- •3.1.5. Вывод значений переменных и функций
- •3.1.6. Символьный вывод
- •3.1.7. Допустимые имена переменных и функций
- •3.2. Операторы
- •3.2.1. Арифметические операторы
- •3.2.2. Вычислительные операторы
- •3.2.3. Логические операторы
- •3.2.4. Матричные операторы
- •3.2.5. Операторы выражения
- •3.2.6. Создание оператора пользователя
- •3.3. Управление вычислениями
- •3.3.1. Режимы вычислений
- •3.3.2. Прерывание вычислений
- •3.3.3. Вычисления в ручном режиме
- •3.3.4. Отключение вычисления отдельных формул
- •3.3.5. Оптимизация вычислений
- •3.3.6. Диалоговое окно Worksheet Options
- •3.4. Сообщения об ошибках
- •4. Типы данных
- •4.1. Типы данных
- •4.1.1. Действительные числа
- •4.1.2. Комплексные числа
- •4.1.3. Встроенные константы
- •4.1.4. Строковые выражения
- •4.2. Размерные переменные
- •4.2.1. Создание размерной переменной
- •4.2.2. Работа с размерными переменными
- •4.2.3. Выбор системы единиц
- •4.2.4. Определение новой размерности
- •4.3. Массивы
- •4.3.1. Доступ к элементам массива
- •4.3.2. Ранжированные переменные
- •4.3.3. Создание массивов
- •4.3.4. Отображение вывода векторов и матриц
- •4.4. Формат вывода числовых данных
- •4.4.1. Формат результата
- •4.4.2. Округление малых чисел до нуля
- •4.4.3. Вывод чисел в других системах счисления
- •4.5. Элементы управления (controls)
- •Лекция 3. Символьные вычисления. Интегрирование и дифференцирование. Алгебраические уравнения и оптимизация.
- •5. Символьные вычисления
- •5.1. Способы символьных вычислений
- •5.2. Символьная алгебра
- •5.2.1. Упрощение выражений (Simplify)
- •5.2.2. Разложение выражений (Expand)
- •5.2.3. Разложение на множители (Factor)
- •5.2.4. Приведение подобных слагаемых (Collect)
- •5.2.5. Коэффициенты полинома (Polynomial Coefficients)
- •5.2.6. Ряды и произведения
- •5.2.7. Разложение на элементарные дроби (Convert to Partial Fractions)
- •5.2.8. Подстановка переменной (Substitute)
- •5.2.9. Матричная алгебра
- •5.3. Математический анализ
- •5.3.1. Дифференцирование (Differentiate)
- •5.3.2. Интегрирование (Integrate)
- •5.3.3. Разложение в ряд (Expand to Series)
- •5.3.4. Решение уравнений (Solve)
- •5.4. Интегральные преобразования
- •5.4.1. Преобразование Фурье (Fourier)
- •5.4.2. Преобразование Лапласа (Laplace)
- •5.5. Дополнительные возможности символьного процессора
- •5.5.1. Применение функций пользователя
- •5.5.2. Получение численного значения выражения
- •5.5.3. Последовательности символьных команд
- •7. Интегрирование и дифференцирование
- •7.1. Интегрирование
- •7.1.1. Операторы интегрирования
- •7.1.2. Об алгоритмах интегрирования
- •7.1.3. 0 Расходящихся интегралах
- •7.1.4. Кратные интегралы
- •7.2. Дифференцирование
- •7.2.1. Первая производная
- •7.2.2. Производные высших порядков
- •7.2.3. Частные производные
- •8. Алгебраические уравнения и оптимизация
- •8.1. Одно уравнение с одним неизвестным
- •8.2. Корни полинома
- •8.3. Системы уравнений
- •8.4. О численных методах решения систем уравнений
- •8.5. Приближенное решение уравнений
- •8.6. Поиск экстремума функции
- •8.6.1. Экстремум функции одной переменной
- •8.6.2. Условный экстремум
- •8.6.3. Экстремум функции многих переменных
- •8.6.4. Линейное программирование
- •8.7. Символьное решение уравнений
- •Лекция 4. Матричные вычисления. Математическая статистика. Обработка данных.
- •9. Матричные вычисления
- •9.1. Простейшие операции с матрицами
- •9.1.1. Транспортирование
- •9.1.2. Сложение
- •9.1.3. Умножение
- •9.1.4. Определитель квадратной матрицы
- •9.1.5. Модуль вектора
- •9.1.6. Скалярное произведение векторов
- •9.1.7. Векторное произведение
- •9.1.8. Сумма элементов вектора и след матрицы
- •9.1.9. Обратная матрица
- •9.1.10. Возведение матрицы в степень
- •9.1.11. Векторизация массивов
- •9.1.12. Символьные операции с матрицами
- •9.2. Матричные функции
- •9.2.1. Функции создания матриц
- •9.2.2. Слияние и разбиение матриц
- •9.2.3. Вывод размера матриц
- •9.2.4. Сортировка матриц
- •9.2.7. Ранг матрицы
- •9.3. Системы линейных алгебраических уравнений
- •14. Математическая статистика
- •14.1. Случайные величины
- •14.1.1. Нормальное (Гауссово) распределение
- •14.1.2. Равномерное распределение
- •14.1.3. Биномиальное распределение
- •14.1.4. Другие статистические распределения
- •14.2. Статистические характеристики
- •14.2.1. Построение гистограмм
- •14.2.3. Генерация коррелированных случайных чисел
- •14.2.4. Ковариация и корреляция
- •14.2.5. Коэффициенты асимметрии и эксцесса
- •14.2.6. Другие статистические характеристики
- •14.2.7. Действие статистических функций на матрицы
- •14.3. Случайные процессы
- •14.4. Некоторые примеры
- •14.4.1. Интервальная оценка дисперсии
- •14.4.2. Проверка статистических гипотез
- •15. Обработка данных
- •15.1. Интерполяция
- •15.1.1. Линейная интерполяция
- •15.1.2. Кубическая сплайн-интерполяция
- •15.1.3. Полиномиальная сплайн-интерполяция
- •15.1.4. Экстраполяция функцией предсказания
- •15.1.5. Многомерная интерполяция
- •15.2. Регрессия
- •15.2.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •15.2.4. Регрессия общего вида
- •15.3. Сглаживание и фильтрация
- •15.3.1. Встроенные функции для сглаживания
- •15.3.2. Скользящее усреднение
- •15.3.3. Устранение тренда
- •15.3.4. Полосовая фильтрация
- •Лекция 5. Числовой ввод-вывод данных. Создание двух- и трехмерных графиков.
- •16.1. Числовой ввод-вывод
- •16.2. Создание графиков
- •16.3. Двумерные графики
- •16.3.4. Полярный график
- •16.3.5. Построение нескольких рядов данных
- •16.3.6. Форматирование осей
- •16.3.7. Форматирование рядов данных
- •16.3.9. Изменение размера и положения графиков
- •16.3.10. Трассировка и увеличение графиков
- •16.4. Трехмерные графики
- •16.4.2. Форматирование трехмерных графиков
- •16.5. Создание анимации
- •16.6. Ввод-вывод во внешние файлы
- •16.6.1. Текстовые файлы
- •16.6.2. Графические файлы
- •16.6.3. Звуковые файлы
- •Литература:
14.2.3. Генерация коррелированных случайных чисел
До сих пор мы рассматривали наиболее простой случай применения генераторов независимых случайных чисел. В методах Монте-Карло часто требуется создавать случайные числа с определенной корреляцией. Приведем пример программы, создающей два вектора x1 и х2 одинакового размера и одним и тем же распределением, случайные элементы которых попарно коррелированы с коэффициентом корреляции R (листинг 14.12).
Листинг 14.12. Генерация попарно коррелированных случайных чисел
Результат действия программы для R=0.4 показан на рис. 14.13 (слева). Сравните полученную выборку с правым графиком, полученным для высокой корреляции (R=0.9) и с рис. 14.3 (см. разд. 14.1.1) для независимых данных, т. е. R=0.
Рис. 14.13. Псевдослучайные числа с корреляцией R=0.4 (листинг 14.12) и R=0.9
14.2.4. Ковариация и корреляция
Функции, устанавливающие связь между парами двух случайных векторов, называются ковариацией и корреляцией (или, по-другому, коэффициентом корреляции). Они различаются нормировкой, как следует из их определения (листинг 14.13).
согг(х) — коэффициент корреляции двух выборок;
cvar(x) — ковариация двух выборок;
x1, х2 — векторы (или матрицы) одинакового размера с выборками случайных данных.
Листинг 14.13. Расчет ковариации и корреляции (продолжение листинга 14.12)
14.2.5. Коэффициенты асимметрии и эксцесса
Коэффициент асимметрии задает степень асимметричности плотности вероятности относительно оси, проходящий через ее центр тяжести. Коэффициент асимметрии определяется третьим центральным моментом распределения. В любом симметричном распределении с нулевым математическим ожиданием, например нормальным, все нечетные моменты, в том числе и третий, равны нулю, поэтому коэффициент асимметрии тоже равен нулю.
Степень сглаженности плотности вероятности в окрестности главного максимума задается еще одной величиной — коэффициентом эксцесса. Он показывает, насколько острую вершину имеет плотность вероятности по сравнению с нормальным распределением. Если коэффициент эксцесса больше нуля, то распределение имеет более острую вершину, чем распределение Гаусса, если меньше нуля, то более плоскую.
Для расчета коэффициентов асимметрии и эксцесса в Mathcad имеются две встроенные функции.
kurt(x) — коэффициент эксцесса (kurtosis) выборки случайных данных х;
skew(x) — коэффициент асимметрии (skewness) выборки случайных данных X .
Примеры расчета коэффициентов асимметрии и эксцесса для распределения Вейбулла (см. рис. 14.10) приведены в листинге 14.14.
Листинг 14.14. Расчет выборочных коэффициентов асимметрии и экспресса
14.2.6. Другие статистические характеристики
В предыдущих разделах были рассмотрены встроенные функции, рассчитывающие наиболее часто используемые статистические характеристики выборок случайных данных. Иногда в статистике встречаются и иные функции, например, помимо арифметического среднего, применяются другие средние значения.
gmean(x) —геометрическое среднее выборки случайных чисел;
hmean(x) — гармоническое среднее выборки случайных чисел.
Математическое определение этих функций и пример их использования в Mathcad приведены в листинге 14.15.
Листинг 14.15. Вычисление различных средних значений
