Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
САПР ТП - Конспект лекций.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.54 Mб
Скачать

14.1.2. Равномерное распределение

Самое простое распределение случайной величины — это распределение с постоянной вероятностью. Вероятность p=const=1/ (b-a) при хЄ(а,b) и P=0, для х вне интервала (а,b). Эту плотность вероятности, наряду с прочими статистическими характеристиками, задают следующие встроенные функции:

  • dunif (x,a,b) — плотность вероятности равномерного распределения;

  • punif(x,a,b) — функция равномерного распределения;

  • qunif(p,a,b) — квантиль равномерного распределения;

  • runif (м,а,b) — вектор м независимых случайных чисел, каждое из которых имеет равномерное распределение;

  • rnd (x) — случайное число, имеющее равномерную плотность распределения на интервале (о, х);

      • х — значение случайной величины;

      • Р — значение вероятности;

      • (а,b) — интервал, на котором случайная величина распределена равномерно.

Рис. 14.4. Псевдослучайные числа с равномерным законом распределения

Чаще всего в несложных программах применяется последняя функция, которая приводит к генерации одного псевдослучайного числа. Наличие такой встроенной функции в Mathcad — дань традиции, применяемой в большинстве сред программирования. Пример использования генератора вектора из м случайных чисел показан на рис. 14.4, который получен заменой в двух последних строках листинга 14.7 генератора нормальных чисел на runif (м,0,1). Плотность вероятности и функция равномерного распределения показаны на рис. 14.5.

Рис. 14.5. Плотность вероятности и функция равномерного распределения

14.1.3. Биномиальное распределение

Приведем встроенные функции, описывающие еще одно распределение случайной величины, которая, в отличие от двух предыдущих, является не непрерывной, а может принимать лишь дискретные значения. Биномиальное распределение описывает последовательность независимых испытаний, каждое из которых может приводить к генерации определенного события с постоянной вероятностью р.

  • dbinom(k,n,p) — плотность вероятности биномиального распределения (рис. 14.6);

  • pbinom(k,n,p) — функция биномиального распределения;

  • qbinom(P,n,p) — квантиль биномиального распределения;

  • rbinom(M,n,р) — вектор м независимых случайных чисел, каждое из которых имеет биномиальное распределение;

      • k — дискретное значение случайной величины;

      • Р — значение вероятности;

      • n— параметр распределения (количество независимых испытаний);

      • р — параметр распределения (вероятность единичного случайного события).

Примером биномиального распределения может служить n-кратное подбрасывание монеты. Вероятность выпадения орла или решки в каждом испытании равна р=0.5, а суммарное количество выпадений, например орла, задается биномиальной плотностью вероятности. Приведем простой пример: если монета подбрасывалась 50 раз, то наиболее вероятное количество выпадений орла, как видно по максимуму плотности вероятности на рис. 14.6, составляет 25. Вероятность того, что орел выпадет 25 раз, составляет dbinom(25, 50, 0.5) =0.112, а, скажем, вероятность того, что 15 раз dbinom(15,50,0.5)=0.002.

Рис. 14.6. Плотность вероятности биномиального распределения