- •Содержание
- •Знакомство с Mathcad
- •1.3. Интерфейс пользователя
- •1.3.1. Меню
- •1.3.2. Панели инструментов
- •1.3.3. Настройка панели инструментов
- •1.3.4. Рабочая область
- •1.3.5. Строка состояния
- •1.4. Справочная информация
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.1.1. Управление документами
- •2.1.2. Создание документа на основе шаблона
- •2.1.3. Сохранение документа
- •2.1.4. Открытие существующего документа
- •2.1.5. Закрытие документа
- •2.2. Ввод и редактирование формул
- •2.2.1. Элементы интерфейса
- •2.2.2. Ввод формул
- •2.2.3. Перемещение линий ввода внутри формул
- •2.2.4. Изменение формул
- •2.2.5. Ввод символов, операторов и функций
- •2.2.6. Управление отображением некоторых операторов
- •2.3. Ввод и редактирование текста
- •2.3.1. Ввод текста
- •2.3.2. Редактирование текста
- •2.3.3. Импорт текста
- •2.3.4. Математические символы внутри текста
- •2.3.5. Гиперссылки
- •2.4. Правка документа
- •2.5. Печать документа
- •2.6. Посылка документа по электронной почте
- •Лекция 2. Автоматизация вычислений в MathCad. Типы данных
- •3.1. Переменные и функции
- •3.1.1. Определение переменных
- •3.1.3. Функции
- •3.1.4. Определение функции пользователя
- •3.1.5. Вывод значений переменных и функций
- •3.1.6. Символьный вывод
- •3.1.7. Допустимые имена переменных и функций
- •3.2. Операторы
- •3.2.1. Арифметические операторы
- •3.2.2. Вычислительные операторы
- •3.2.3. Логические операторы
- •3.2.4. Матричные операторы
- •3.2.5. Операторы выражения
- •3.2.6. Создание оператора пользователя
- •3.3. Управление вычислениями
- •3.3.1. Режимы вычислений
- •3.3.2. Прерывание вычислений
- •3.3.3. Вычисления в ручном режиме
- •3.3.4. Отключение вычисления отдельных формул
- •3.3.5. Оптимизация вычислений
- •3.3.6. Диалоговое окно Worksheet Options
- •3.4. Сообщения об ошибках
- •4. Типы данных
- •4.1. Типы данных
- •4.1.1. Действительные числа
- •4.1.2. Комплексные числа
- •4.1.3. Встроенные константы
- •4.1.4. Строковые выражения
- •4.2. Размерные переменные
- •4.2.1. Создание размерной переменной
- •4.2.2. Работа с размерными переменными
- •4.2.3. Выбор системы единиц
- •4.2.4. Определение новой размерности
- •4.3. Массивы
- •4.3.1. Доступ к элементам массива
- •4.3.2. Ранжированные переменные
- •4.3.3. Создание массивов
- •4.3.4. Отображение вывода векторов и матриц
- •4.4. Формат вывода числовых данных
- •4.4.1. Формат результата
- •4.4.2. Округление малых чисел до нуля
- •4.4.3. Вывод чисел в других системах счисления
- •4.5. Элементы управления (controls)
- •Лекция 3. Символьные вычисления. Интегрирование и дифференцирование. Алгебраические уравнения и оптимизация.
- •5. Символьные вычисления
- •5.1. Способы символьных вычислений
- •5.2. Символьная алгебра
- •5.2.1. Упрощение выражений (Simplify)
- •5.2.2. Разложение выражений (Expand)
- •5.2.3. Разложение на множители (Factor)
- •5.2.4. Приведение подобных слагаемых (Collect)
- •5.2.5. Коэффициенты полинома (Polynomial Coefficients)
- •5.2.6. Ряды и произведения
- •5.2.7. Разложение на элементарные дроби (Convert to Partial Fractions)
- •5.2.8. Подстановка переменной (Substitute)
- •5.2.9. Матричная алгебра
- •5.3. Математический анализ
- •5.3.1. Дифференцирование (Differentiate)
- •5.3.2. Интегрирование (Integrate)
- •5.3.3. Разложение в ряд (Expand to Series)
- •5.3.4. Решение уравнений (Solve)
- •5.4. Интегральные преобразования
- •5.4.1. Преобразование Фурье (Fourier)
- •5.4.2. Преобразование Лапласа (Laplace)
- •5.5. Дополнительные возможности символьного процессора
- •5.5.1. Применение функций пользователя
- •5.5.2. Получение численного значения выражения
- •5.5.3. Последовательности символьных команд
- •7. Интегрирование и дифференцирование
- •7.1. Интегрирование
- •7.1.1. Операторы интегрирования
- •7.1.2. Об алгоритмах интегрирования
- •7.1.3. 0 Расходящихся интегралах
- •7.1.4. Кратные интегралы
- •7.2. Дифференцирование
- •7.2.1. Первая производная
- •7.2.2. Производные высших порядков
- •7.2.3. Частные производные
- •8. Алгебраические уравнения и оптимизация
- •8.1. Одно уравнение с одним неизвестным
- •8.2. Корни полинома
- •8.3. Системы уравнений
- •8.4. О численных методах решения систем уравнений
- •8.5. Приближенное решение уравнений
- •8.6. Поиск экстремума функции
- •8.6.1. Экстремум функции одной переменной
- •8.6.2. Условный экстремум
- •8.6.3. Экстремум функции многих переменных
- •8.6.4. Линейное программирование
- •8.7. Символьное решение уравнений
- •Лекция 4. Матричные вычисления. Математическая статистика. Обработка данных.
- •9. Матричные вычисления
- •9.1. Простейшие операции с матрицами
- •9.1.1. Транспортирование
- •9.1.2. Сложение
- •9.1.3. Умножение
- •9.1.4. Определитель квадратной матрицы
- •9.1.5. Модуль вектора
- •9.1.6. Скалярное произведение векторов
- •9.1.7. Векторное произведение
- •9.1.8. Сумма элементов вектора и след матрицы
- •9.1.9. Обратная матрица
- •9.1.10. Возведение матрицы в степень
- •9.1.11. Векторизация массивов
- •9.1.12. Символьные операции с матрицами
- •9.2. Матричные функции
- •9.2.1. Функции создания матриц
- •9.2.2. Слияние и разбиение матриц
- •9.2.3. Вывод размера матриц
- •9.2.4. Сортировка матриц
- •9.2.7. Ранг матрицы
- •9.3. Системы линейных алгебраических уравнений
- •14. Математическая статистика
- •14.1. Случайные величины
- •14.1.1. Нормальное (Гауссово) распределение
- •14.1.2. Равномерное распределение
- •14.1.3. Биномиальное распределение
- •14.1.4. Другие статистические распределения
- •14.2. Статистические характеристики
- •14.2.1. Построение гистограмм
- •14.2.3. Генерация коррелированных случайных чисел
- •14.2.4. Ковариация и корреляция
- •14.2.5. Коэффициенты асимметрии и эксцесса
- •14.2.6. Другие статистические характеристики
- •14.2.7. Действие статистических функций на матрицы
- •14.3. Случайные процессы
- •14.4. Некоторые примеры
- •14.4.1. Интервальная оценка дисперсии
- •14.4.2. Проверка статистических гипотез
- •15. Обработка данных
- •15.1. Интерполяция
- •15.1.1. Линейная интерполяция
- •15.1.2. Кубическая сплайн-интерполяция
- •15.1.3. Полиномиальная сплайн-интерполяция
- •15.1.4. Экстраполяция функцией предсказания
- •15.1.5. Многомерная интерполяция
- •15.2. Регрессия
- •15.2.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •15.2.4. Регрессия общего вида
- •15.3. Сглаживание и фильтрация
- •15.3.1. Встроенные функции для сглаживания
- •15.3.2. Скользящее усреднение
- •15.3.3. Устранение тренда
- •15.3.4. Полосовая фильтрация
- •Лекция 5. Числовой ввод-вывод данных. Создание двух- и трехмерных графиков.
- •16.1. Числовой ввод-вывод
- •16.2. Создание графиков
- •16.3. Двумерные графики
- •16.3.4. Полярный график
- •16.3.5. Построение нескольких рядов данных
- •16.3.6. Форматирование осей
- •16.3.7. Форматирование рядов данных
- •16.3.9. Изменение размера и положения графиков
- •16.3.10. Трассировка и увеличение графиков
- •16.4. Трехмерные графики
- •16.4.2. Форматирование трехмерных графиков
- •16.5. Создание анимации
- •16.6. Ввод-вывод во внешние файлы
- •16.6.1. Текстовые файлы
- •16.6.2. Графические файлы
- •16.6.3. Звуковые файлы
- •Литература:
8.5. Приближенное решение уравнений
Иногда приходится заменять задачу определения корней системы уравнений задачей поиска экстремума функции многих переменных. Например, когда невозможно найти решение с помощью функции Find, можно попытаться потребовать вместо точного выполнения уравнений условий минимизировать их невязку. Для этого следует в вычислительном блоке вместо функции Find использовать функцию Minerr, имеющую тот же самый набор параметров. Она также должна находиться в пределах вычислительного блока:
x1:=C1 ... хм: =Cм — начальные значения для неизвестных.
Given — ключевое слово.
Система алгебраических уравнений и неравенств, записанная логическими операторами.
Minerr (x1,... ,хм) — приближенное решение системы относительно переменных х1;... ,хм, минимизирующее невязку системы уравнений.
В функции Minerr реализованы те же самые алгоритмы, что и в функции Find, иным является только условие завершения работы численного метода. Поэтому пользователь может тем же самым образом, с помощью контекстного меню (см. разд. 8.4), выбирать численный алгоритм приближенного решения для функции Minerr.
Пример использования функции Minerr показан в листинге 8.9. Как видно, достаточно заменить в вычислительном блоке имя функции на Minerr, чтобы вместо точного (с точностью до TOL) получить приближенное решение уравнения, заданного после ключевого слова Given.
Листинг 8.9. Приближений решение уравнения, имеющего корень (x=0, y=0)
Листинг 8.9 демонстрирует приближенное решение уравнения kx2+y2:=0, которое при любом значении коэффициента k имеет единственный точный корень (х=0,у=0). Тем не менее, при попытке решить его функцией Find для больших k, порядка принятых в листинге, происходит генерация ошибки "No solution was found" (Решение не найдено). Это связано с иным поведением функции f (x,y)=kx2+y2 вблизи ее корня, по сравнению с функциями, приводимыми в качестве примеров выше в этой главе (см. рис. 8.1, 8.2). В отличие от них, f (х,у) не пересекает плоскость f (х,у)=0, а лишь касается ее (рис. 8.7) в точке (х=0,у=0). Поэтому и найти корень изложенными в предыдущем разделе градиентными методами сложнее, поскольку вблизи корня производные f (х, у) близки к нулю, и итерации могут уводить предполагаемое решение далеко от корня.
Ситуация еще более ухудшается, если наряду с корнем типа касания (см. рис. 8.7) имеются (возможно, весьма удаленные) корни типа пересечения. Тогда попытка решить уравнение или систему уравнений с помощью функции Find может приводить к нахождению корня второго типа, даже если начальное приближение было взято очень близко к первому. Поэтому если Вы предполагаете, что система уравнений имеет корень типа касания, намного предпочтительнее использовать функцию Minerr, тем более, что всегда есть возможность проверить правильность решения уравнений простой подстановкой в них полученного решения (см. листинг 8.6).
Рис. 8.7. График функции kx2+y2
В листинге 8.9 мы рассмотрели пример нахождения существующего решения уравнения. Приведем в заключение пример нахождения функцией Minerr приближенного решения несовместной системы уравнений и неравенств (листинг 8.10). Решение, выдаваемое функцией Minerr, минимизирует невязку данной системы.
Согласно своему математическому смыслу, функция Minerr может применяться для построения регрессии серии данных по закону, заданному пользователем (см. разд. 15.2).
Листинг 8.10. Приближенное решение несовместной системы уравнений и неравенств
Как видно из листинга, в качестве результата выдаются значения переменных, наилучшим образом удовлетворяющие уравнению и неравенствам внутри вычислительного блока. Внимательный читатель может обнаружить, что решение, выдаваемое функцией Minerr в рассматриваемом примере, не является единственным, поскольку множество пар значений (х,у) в равной степени минимизирует невязку данной системы уравнений и неравенств. Поэтому для различных начальных значений будут получаться разные решения, подобно тому как разные решения выдаются функцией Find в случае бесконечного множества корней (см. обсуждение листинга 8.6 в разд. 8.3). Еще более опасен случай, когда имеются всего несколько локальных минимумов функции невязки. Тогда неудачно выбранное начальное приближение приведет к выдаче именно этого локального минимума, несмотря на то, что другой (глобальный) минимум невязки может удовлетворять системе гораздо лучше.
