- •Содержание
- •Знакомство с Mathcad
- •1.3. Интерфейс пользователя
- •1.3.1. Меню
- •1.3.2. Панели инструментов
- •1.3.3. Настройка панели инструментов
- •1.3.4. Рабочая область
- •1.3.5. Строка состояния
- •1.4. Справочная информация
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.1.1. Управление документами
- •2.1.2. Создание документа на основе шаблона
- •2.1.3. Сохранение документа
- •2.1.4. Открытие существующего документа
- •2.1.5. Закрытие документа
- •2.2. Ввод и редактирование формул
- •2.2.1. Элементы интерфейса
- •2.2.2. Ввод формул
- •2.2.3. Перемещение линий ввода внутри формул
- •2.2.4. Изменение формул
- •2.2.5. Ввод символов, операторов и функций
- •2.2.6. Управление отображением некоторых операторов
- •2.3. Ввод и редактирование текста
- •2.3.1. Ввод текста
- •2.3.2. Редактирование текста
- •2.3.3. Импорт текста
- •2.3.4. Математические символы внутри текста
- •2.3.5. Гиперссылки
- •2.4. Правка документа
- •2.5. Печать документа
- •2.6. Посылка документа по электронной почте
- •Лекция 2. Автоматизация вычислений в MathCad. Типы данных
- •3.1. Переменные и функции
- •3.1.1. Определение переменных
- •3.1.3. Функции
- •3.1.4. Определение функции пользователя
- •3.1.5. Вывод значений переменных и функций
- •3.1.6. Символьный вывод
- •3.1.7. Допустимые имена переменных и функций
- •3.2. Операторы
- •3.2.1. Арифметические операторы
- •3.2.2. Вычислительные операторы
- •3.2.3. Логические операторы
- •3.2.4. Матричные операторы
- •3.2.5. Операторы выражения
- •3.2.6. Создание оператора пользователя
- •3.3. Управление вычислениями
- •3.3.1. Режимы вычислений
- •3.3.2. Прерывание вычислений
- •3.3.3. Вычисления в ручном режиме
- •3.3.4. Отключение вычисления отдельных формул
- •3.3.5. Оптимизация вычислений
- •3.3.6. Диалоговое окно Worksheet Options
- •3.4. Сообщения об ошибках
- •4. Типы данных
- •4.1. Типы данных
- •4.1.1. Действительные числа
- •4.1.2. Комплексные числа
- •4.1.3. Встроенные константы
- •4.1.4. Строковые выражения
- •4.2. Размерные переменные
- •4.2.1. Создание размерной переменной
- •4.2.2. Работа с размерными переменными
- •4.2.3. Выбор системы единиц
- •4.2.4. Определение новой размерности
- •4.3. Массивы
- •4.3.1. Доступ к элементам массива
- •4.3.2. Ранжированные переменные
- •4.3.3. Создание массивов
- •4.3.4. Отображение вывода векторов и матриц
- •4.4. Формат вывода числовых данных
- •4.4.1. Формат результата
- •4.4.2. Округление малых чисел до нуля
- •4.4.3. Вывод чисел в других системах счисления
- •4.5. Элементы управления (controls)
- •Лекция 3. Символьные вычисления. Интегрирование и дифференцирование. Алгебраические уравнения и оптимизация.
- •5. Символьные вычисления
- •5.1. Способы символьных вычислений
- •5.2. Символьная алгебра
- •5.2.1. Упрощение выражений (Simplify)
- •5.2.2. Разложение выражений (Expand)
- •5.2.3. Разложение на множители (Factor)
- •5.2.4. Приведение подобных слагаемых (Collect)
- •5.2.5. Коэффициенты полинома (Polynomial Coefficients)
- •5.2.6. Ряды и произведения
- •5.2.7. Разложение на элементарные дроби (Convert to Partial Fractions)
- •5.2.8. Подстановка переменной (Substitute)
- •5.2.9. Матричная алгебра
- •5.3. Математический анализ
- •5.3.1. Дифференцирование (Differentiate)
- •5.3.2. Интегрирование (Integrate)
- •5.3.3. Разложение в ряд (Expand to Series)
- •5.3.4. Решение уравнений (Solve)
- •5.4. Интегральные преобразования
- •5.4.1. Преобразование Фурье (Fourier)
- •5.4.2. Преобразование Лапласа (Laplace)
- •5.5. Дополнительные возможности символьного процессора
- •5.5.1. Применение функций пользователя
- •5.5.2. Получение численного значения выражения
- •5.5.3. Последовательности символьных команд
- •7. Интегрирование и дифференцирование
- •7.1. Интегрирование
- •7.1.1. Операторы интегрирования
- •7.1.2. Об алгоритмах интегрирования
- •7.1.3. 0 Расходящихся интегралах
- •7.1.4. Кратные интегралы
- •7.2. Дифференцирование
- •7.2.1. Первая производная
- •7.2.2. Производные высших порядков
- •7.2.3. Частные производные
- •8. Алгебраические уравнения и оптимизация
- •8.1. Одно уравнение с одним неизвестным
- •8.2. Корни полинома
- •8.3. Системы уравнений
- •8.4. О численных методах решения систем уравнений
- •8.5. Приближенное решение уравнений
- •8.6. Поиск экстремума функции
- •8.6.1. Экстремум функции одной переменной
- •8.6.2. Условный экстремум
- •8.6.3. Экстремум функции многих переменных
- •8.6.4. Линейное программирование
- •8.7. Символьное решение уравнений
- •Лекция 4. Матричные вычисления. Математическая статистика. Обработка данных.
- •9. Матричные вычисления
- •9.1. Простейшие операции с матрицами
- •9.1.1. Транспортирование
- •9.1.2. Сложение
- •9.1.3. Умножение
- •9.1.4. Определитель квадратной матрицы
- •9.1.5. Модуль вектора
- •9.1.6. Скалярное произведение векторов
- •9.1.7. Векторное произведение
- •9.1.8. Сумма элементов вектора и след матрицы
- •9.1.9. Обратная матрица
- •9.1.10. Возведение матрицы в степень
- •9.1.11. Векторизация массивов
- •9.1.12. Символьные операции с матрицами
- •9.2. Матричные функции
- •9.2.1. Функции создания матриц
- •9.2.2. Слияние и разбиение матриц
- •9.2.3. Вывод размера матриц
- •9.2.4. Сортировка матриц
- •9.2.7. Ранг матрицы
- •9.3. Системы линейных алгебраических уравнений
- •14. Математическая статистика
- •14.1. Случайные величины
- •14.1.1. Нормальное (Гауссово) распределение
- •14.1.2. Равномерное распределение
- •14.1.3. Биномиальное распределение
- •14.1.4. Другие статистические распределения
- •14.2. Статистические характеристики
- •14.2.1. Построение гистограмм
- •14.2.3. Генерация коррелированных случайных чисел
- •14.2.4. Ковариация и корреляция
- •14.2.5. Коэффициенты асимметрии и эксцесса
- •14.2.6. Другие статистические характеристики
- •14.2.7. Действие статистических функций на матрицы
- •14.3. Случайные процессы
- •14.4. Некоторые примеры
- •14.4.1. Интервальная оценка дисперсии
- •14.4.2. Проверка статистических гипотез
- •15. Обработка данных
- •15.1. Интерполяция
- •15.1.1. Линейная интерполяция
- •15.1.2. Кубическая сплайн-интерполяция
- •15.1.3. Полиномиальная сплайн-интерполяция
- •15.1.4. Экстраполяция функцией предсказания
- •15.1.5. Многомерная интерполяция
- •15.2. Регрессия
- •15.2.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •15.2.4. Регрессия общего вида
- •15.3. Сглаживание и фильтрация
- •15.3.1. Встроенные функции для сглаживания
- •15.3.2. Скользящее усреднение
- •15.3.3. Устранение тренда
- •15.3.4. Полосовая фильтрация
- •Лекция 5. Числовой ввод-вывод данных. Создание двух- и трехмерных графиков.
- •16.1. Числовой ввод-вывод
- •16.2. Создание графиков
- •16.3. Двумерные графики
- •16.3.4. Полярный график
- •16.3.5. Построение нескольких рядов данных
- •16.3.6. Форматирование осей
- •16.3.7. Форматирование рядов данных
- •16.3.9. Изменение размера и положения графиков
- •16.3.10. Трассировка и увеличение графиков
- •16.4. Трехмерные графики
- •16.4.2. Форматирование трехмерных графиков
- •16.5. Создание анимации
- •16.6. Ввод-вывод во внешние файлы
- •16.6.1. Текстовые файлы
- •16.6.2. Графические файлы
- •16.6.3. Звуковые файлы
- •Литература:
8.4. О численных методах решения систем уравнений
Если Вы решаете "хорошие" уравнения, как все те, которые были приведены в предыдущих разделах, то можете никогда не задумываться, как именно Mathcad ищет их корни. Однако даже в этом случае полезно представлять, что происходит "за кадром", т. е. какие действия совершаются в промежутке между введением необходимых условий после ключевого слова Given и получением результата после применения функции Find. Это важно хотя бы с позиций выбора начальных значений переменных перед вычислительным блоком. Рассмотрим в данном разделе некоторые особенности численных методов и возможности установки их различных параметров, которые предоставляет Mathcad.
Функция Find реализует градиентные численные методы. Покажем их основную идею на примере уравнения с одним неизвестным f(x)=0 для функции f (х)=х2+5х+2, график которой показан на рис. 8.4. Основная идея градиентных методов состоит в последовательных приближениях к истинному решению уравнения, которые вычисляются с помощью производной от f (х). Приведем наиболее простую форму алгоритма, называемого методом Ньютона:
За нулевую итерацию принимается введенное пользователем начальное значение х0=х.
В точке х0 методом конечных разностей вычисляется производная f'(х0).
Пользуясь разложением Тейлора, можно заменить f (х) в окрестности хо касательной — прямой линией f(x)=f(х0)+f '(х0)(х-х0).
Определяется точка x1, в которой прямая пересекает ось х (см. рис. 8.4).
Если f (x1)<TOL, то итерации прерываются, и значение x1 выдается в качестве решения. В противном случае x1 принимается за новую итерацию, и цикл повторяется: строится касательная к f (х) в точке x1, определяется х2 — точка ее пересечения с осью х и т. д.
Рис. 8.4. Иллюстрация метода Ньютона
Модификация алгоритма Ньютона для решения системы нескольких уравнений заключается в линеаризации соответствующих функций многих переменных, т. е. аппроксимации их линейной зависимостью с помощью частных производных. Например, для нулевой итерации в случае системы двух уравнений используются выражения.
Чтобы отыскать точку, соответствующую каждой новой итерации, требуется приравнять оба равенства нулю, т. е. решить на каждом шаге полученную систему линейных уравнений.
Mathcad предлагает три различных вида градиентных методов. Чтобы поменять численный метод:
Щелкните правой кнопкой мыши на названии функции Find.
Наведите указатель мыши на пункт Nonlinear (Нелинейный) в контекстном меню.
В появившемся подменю (рис. 8.5) выберите один из трех методов: Conjugate Gradient (Сопряженных градиентов), Quasi-Newton (Квази-Нью-тоновский) или Levenberg-Marquardt (Левенберга).
Рис. 8.5. Смена численного метода
Чтобы вернуть автоматический выбор типа численного метода, в контекстном меню надо выбрать пункт AutoSelect (Автоматический выбор) Если установлена опция автоматического выбора (о чем говорит флажок, установленный в пункте AutoSelect), то текущий тип численного метода можно узнать, вызвав то же самое подменю и посмотрев, который из них отмечен точкой Два последних метода являются квази-Ньютоновскими, основная идея которых была рассмотрена выше. Первый из них, метод сопряженных градиентов, является двухшаговым — для поиска очередной итерации он использует как текущую, так и предыдущую итерации. Алгоритм Левенберга подробно описан в справочной системе Mathcad, а детальную информацию о методах Ньютона и сопряженных градиентов можно найти в большинстве книг по численным методам
Помимо выбора самою метода, имеется возможность устанавливать их некоторые параметры Для этого нужно вызвать с помощью того же контекстного меню диалоговое окно Advanced Options (Дополнительные параметры), выбрав в контекстном меню пункты Nonlinear / Advanced options (Нелинейный / Дополнительные параметры) В этом диалоговом окне (рис. 8.6.) имеется пять групп переключателей, по два в каждой
В первой строке Derivative estimation (Аппроксимация производной) определяется метод вычисления производной Forward (Вперед) или Central (Центральная) Они соответствуют аппроксимации производной либо правой (двухточечная схема "вперед"), либо центральной (трехточечная симметричная схема) конечной разностью
Обратите внимание, что вычисление производной в градиентных численных методах решения уравнений производится более экономичным способом, нежели при численном дифференцировании.
Во второй строке Variable estimation (Аппроксимация переменных) можно определить тип аппроксимации рядом Тейлора Для рассмотренного нами в этом разделе случая аппроксимации касательной прямой линией выберите переключатель Tangent (Касательная), для более точной квадратичной аппроксимации (параболой) выберите Quadratic (Квадратичная) Следующая группа переключателей Linear variable check (Проверка линейности) позволяет в специфических задачах сэкономить время вычислений Если Вы уверены, что нелинейности всех функций, входящих в уравнение, мало сказываются на значениях всех их частных производных, то установите переключатель Yes (Да) В этом случае производные будут приняты равными константам и не будут вычисляться на каждом шаге
С осторожностью изменяйте параметры численных методов Пользуйтесь ими, когда решение не находится при выставленных по умолчанию параметрах или когда расчеты занимают очень продолжительное время.
Рис. 8.6. Диалоговое окно Advanced Options
Пара переключателей Multistart (Сканирование) задает опцию поиска глобального или локального минимума или максимума Если выставлен переключатель Yes (Да), Mathcad будет пытаться найти наиболее глубокий экстремум из области, близкой к начальному приближению Эта опция предназначена, в основном, для настройки (тех же самых, градиентных) алгоритмов поиска экстремума, а не для решения алгебраических уравнений
Наконец, последний переключатель Evolutionary (Эволюционный алгоритм), если установить его в положение Yes (Да), позволяет использовать модификацию численного метода для решения уравнений, определяемых не обязательно гладкими функциями. Как мы убедились в этом разделе, все градиентные методы, реализованные в функции Find, требуют многократного вычисления производных. Если Вы работаете с достаточно гладкими функциями, то градиентные методы обеспечивают быстрый и надежный поиск корня. Для поиска корня недостаточно гладких функций одной переменной, следует либо выставить данную опцию функции Find, либо использовать метод секущих (функцию root). Помните, что правильный выбор численного метода и его параметров может помочь при решении нестандартной задачи, которая при стандартных установках может и не поддаваться решению.
