- •Содержание
- •Знакомство с Mathcad
- •1.3. Интерфейс пользователя
- •1.3.1. Меню
- •1.3.2. Панели инструментов
- •1.3.3. Настройка панели инструментов
- •1.3.4. Рабочая область
- •1.3.5. Строка состояния
- •1.4. Справочная информация
- •2. Редактирование документов
- •2.1. Работа с документами
- •2.1.1. Управление документами
- •2.1.2. Создание документа на основе шаблона
- •2.1.3. Сохранение документа
- •2.1.4. Открытие существующего документа
- •2.1.5. Закрытие документа
- •2.2. Ввод и редактирование формул
- •2.2.1. Элементы интерфейса
- •2.2.2. Ввод формул
- •2.2.3. Перемещение линий ввода внутри формул
- •2.2.4. Изменение формул
- •2.2.5. Ввод символов, операторов и функций
- •2.2.6. Управление отображением некоторых операторов
- •2.3. Ввод и редактирование текста
- •2.3.1. Ввод текста
- •2.3.2. Редактирование текста
- •2.3.3. Импорт текста
- •2.3.4. Математические символы внутри текста
- •2.3.5. Гиперссылки
- •2.4. Правка документа
- •2.5. Печать документа
- •2.6. Посылка документа по электронной почте
- •Лекция 2. Автоматизация вычислений в MathCad. Типы данных
- •3.1. Переменные и функции
- •3.1.1. Определение переменных
- •3.1.3. Функции
- •3.1.4. Определение функции пользователя
- •3.1.5. Вывод значений переменных и функций
- •3.1.6. Символьный вывод
- •3.1.7. Допустимые имена переменных и функций
- •3.2. Операторы
- •3.2.1. Арифметические операторы
- •3.2.2. Вычислительные операторы
- •3.2.3. Логические операторы
- •3.2.4. Матричные операторы
- •3.2.5. Операторы выражения
- •3.2.6. Создание оператора пользователя
- •3.3. Управление вычислениями
- •3.3.1. Режимы вычислений
- •3.3.2. Прерывание вычислений
- •3.3.3. Вычисления в ручном режиме
- •3.3.4. Отключение вычисления отдельных формул
- •3.3.5. Оптимизация вычислений
- •3.3.6. Диалоговое окно Worksheet Options
- •3.4. Сообщения об ошибках
- •4. Типы данных
- •4.1. Типы данных
- •4.1.1. Действительные числа
- •4.1.2. Комплексные числа
- •4.1.3. Встроенные константы
- •4.1.4. Строковые выражения
- •4.2. Размерные переменные
- •4.2.1. Создание размерной переменной
- •4.2.2. Работа с размерными переменными
- •4.2.3. Выбор системы единиц
- •4.2.4. Определение новой размерности
- •4.3. Массивы
- •4.3.1. Доступ к элементам массива
- •4.3.2. Ранжированные переменные
- •4.3.3. Создание массивов
- •4.3.4. Отображение вывода векторов и матриц
- •4.4. Формат вывода числовых данных
- •4.4.1. Формат результата
- •4.4.2. Округление малых чисел до нуля
- •4.4.3. Вывод чисел в других системах счисления
- •4.5. Элементы управления (controls)
- •Лекция 3. Символьные вычисления. Интегрирование и дифференцирование. Алгебраические уравнения и оптимизация.
- •5. Символьные вычисления
- •5.1. Способы символьных вычислений
- •5.2. Символьная алгебра
- •5.2.1. Упрощение выражений (Simplify)
- •5.2.2. Разложение выражений (Expand)
- •5.2.3. Разложение на множители (Factor)
- •5.2.4. Приведение подобных слагаемых (Collect)
- •5.2.5. Коэффициенты полинома (Polynomial Coefficients)
- •5.2.6. Ряды и произведения
- •5.2.7. Разложение на элементарные дроби (Convert to Partial Fractions)
- •5.2.8. Подстановка переменной (Substitute)
- •5.2.9. Матричная алгебра
- •5.3. Математический анализ
- •5.3.1. Дифференцирование (Differentiate)
- •5.3.2. Интегрирование (Integrate)
- •5.3.3. Разложение в ряд (Expand to Series)
- •5.3.4. Решение уравнений (Solve)
- •5.4. Интегральные преобразования
- •5.4.1. Преобразование Фурье (Fourier)
- •5.4.2. Преобразование Лапласа (Laplace)
- •5.5. Дополнительные возможности символьного процессора
- •5.5.1. Применение функций пользователя
- •5.5.2. Получение численного значения выражения
- •5.5.3. Последовательности символьных команд
- •7. Интегрирование и дифференцирование
- •7.1. Интегрирование
- •7.1.1. Операторы интегрирования
- •7.1.2. Об алгоритмах интегрирования
- •7.1.3. 0 Расходящихся интегралах
- •7.1.4. Кратные интегралы
- •7.2. Дифференцирование
- •7.2.1. Первая производная
- •7.2.2. Производные высших порядков
- •7.2.3. Частные производные
- •8. Алгебраические уравнения и оптимизация
- •8.1. Одно уравнение с одним неизвестным
- •8.2. Корни полинома
- •8.3. Системы уравнений
- •8.4. О численных методах решения систем уравнений
- •8.5. Приближенное решение уравнений
- •8.6. Поиск экстремума функции
- •8.6.1. Экстремум функции одной переменной
- •8.6.2. Условный экстремум
- •8.6.3. Экстремум функции многих переменных
- •8.6.4. Линейное программирование
- •8.7. Символьное решение уравнений
- •Лекция 4. Матричные вычисления. Математическая статистика. Обработка данных.
- •9. Матричные вычисления
- •9.1. Простейшие операции с матрицами
- •9.1.1. Транспортирование
- •9.1.2. Сложение
- •9.1.3. Умножение
- •9.1.4. Определитель квадратной матрицы
- •9.1.5. Модуль вектора
- •9.1.6. Скалярное произведение векторов
- •9.1.7. Векторное произведение
- •9.1.8. Сумма элементов вектора и след матрицы
- •9.1.9. Обратная матрица
- •9.1.10. Возведение матрицы в степень
- •9.1.11. Векторизация массивов
- •9.1.12. Символьные операции с матрицами
- •9.2. Матричные функции
- •9.2.1. Функции создания матриц
- •9.2.2. Слияние и разбиение матриц
- •9.2.3. Вывод размера матриц
- •9.2.4. Сортировка матриц
- •9.2.7. Ранг матрицы
- •9.3. Системы линейных алгебраических уравнений
- •14. Математическая статистика
- •14.1. Случайные величины
- •14.1.1. Нормальное (Гауссово) распределение
- •14.1.2. Равномерное распределение
- •14.1.3. Биномиальное распределение
- •14.1.4. Другие статистические распределения
- •14.2. Статистические характеристики
- •14.2.1. Построение гистограмм
- •14.2.3. Генерация коррелированных случайных чисел
- •14.2.4. Ковариация и корреляция
- •14.2.5. Коэффициенты асимметрии и эксцесса
- •14.2.6. Другие статистические характеристики
- •14.2.7. Действие статистических функций на матрицы
- •14.3. Случайные процессы
- •14.4. Некоторые примеры
- •14.4.1. Интервальная оценка дисперсии
- •14.4.2. Проверка статистических гипотез
- •15. Обработка данных
- •15.1. Интерполяция
- •15.1.1. Линейная интерполяция
- •15.1.2. Кубическая сплайн-интерполяция
- •15.1.3. Полиномиальная сплайн-интерполяция
- •15.1.4. Экстраполяция функцией предсказания
- •15.1.5. Многомерная интерполяция
- •15.2. Регрессия
- •15.2.1. Линейная регрессия
- •15.2.2. Полиномиальная регрессия
- •15.2.3. Регрессия специального вида
- •15.2.4. Регрессия общего вида
- •15.3. Сглаживание и фильтрация
- •15.3.1. Встроенные функции для сглаживания
- •15.3.2. Скользящее усреднение
- •15.3.3. Устранение тренда
- •15.3.4. Полосовая фильтрация
- •Лекция 5. Числовой ввод-вывод данных. Создание двух- и трехмерных графиков.
- •16.1. Числовой ввод-вывод
- •16.2. Создание графиков
- •16.3. Двумерные графики
- •16.3.4. Полярный график
- •16.3.5. Построение нескольких рядов данных
- •16.3.6. Форматирование осей
- •16.3.7. Форматирование рядов данных
- •16.3.9. Изменение размера и положения графиков
- •16.3.10. Трассировка и увеличение графиков
- •16.4. Трехмерные графики
- •16.4.2. Форматирование трехмерных графиков
- •16.5. Создание анимации
- •16.6. Ввод-вывод во внешние файлы
- •16.6.1. Текстовые файлы
- •16.6.2. Графические файлы
- •16.6.3. Звуковые файлы
- •Литература:
4.3.3. Создание массивов
Существует несколько способов создания массива:
ввод всех элементов вручную с помощью команды Insert Matrix;
определение отдельных элементов массива;
создание таблицы данных и ввод в нее чисел;
применение встроенных функций создания массива (см. гл. 9);
создание связи с другим приложением, например Excel или MATLAB;
чтение из внешнего файла данных;
импорт из внешнего файла данных.
Рассмотрим основные способы создания массива, учитывая, что две последних возможности будут разобраны в последней части книги Применяйте способ, который оптимален в смысле простоты и читаемости конкретного документа, либо ставший наиболее для Вас привычным.
Создание матрицы командой Insert Matrix
Самый простой и наглядный способ создания вектора или матрицы заключается в следующем:
Нажмите кнопку Matrix or Vector (Матрица или вектор) на панели Matrix (Матрица) (рис. 4.12) либо клавиши <Ctrl>+<M>, либо выберите пункт меню Insert / Matrix (Вставка / Матрица).
В диалоговом окне Insert Matrix (Вставка матрицы) задайте целое число столбцов и строк матрицы, которую хотите создать. Например, для создания вектора 3x1 введите показанные на рис. 4.12 значения.
Нажмите кнопку ОК или Insert (Вставить) — в результате в документ будет вставлена заготовка матрицы с определенным числом строк и столбцов (рис. 4.13).
Введите значения в местозаполнители элементов матрицы. Переходить от одного элемента матрицы к другому можно с помощью указателя мыши либо клавиш со стрелками.
Добавление в уже созданную матрицу строк или столбцов производится точно так же:
Выделите линиями ввода элемент матрицы, правее и ниже которого будет осуществлена всгавка столбцов и (или) строк.
Вставьте в него матрицу, как было описано выше. При этом допускается задание числа столбцов или строк равным нулю (рис. 4.14).
Заполните местозаполнители недостающих элементов матрицы.
Рис. 4.12. Вставка матрицы
Рис. 4.13. Заполнение матрицы элементами
На рис. 4.14 и 4.15 показаны результаты последовательной вставки в матрицу столбца и строки после определения соответствующего числа столбцов и строк в диалоге Insert Matrix и нажатия в нем кнопки Insert (Вставить).
Рис. 4.14. Добавление одного столбца к матрице
Рис. 4.15. Добавление одной строки к матрице
В местозаполнители элементов матрицы можно вставлять не только числа (действительные или комплексные), но и любые математические выражения, состоящие из переменных, операторов, встроенных и пользовательских функций (листинг 4.16, вторая строка).
Листинг 4.16. Использование переменных и функций при определении матрицы
Создание массива определением его отдельных элементов
Массив можно определить следующим образом:
присваивая значения непосредственно отдельным элементам массива;
применяя ранжированные переменные (см. листинг 4.15).
Любой из этих способов позволяет присвоить нужное значение как всем элементам массива (см. листинг 4.15), так и части из них, либо даже одному-единственному элементу. В последнем случае создается массив, размерность которого задается индексами введенного элемента (листинг 4.17), а неопределенным элементам по умолчанию присваиваются нулевые значения.
Листинг 4.17. Создание матрицы определением одного ее элемента.
В любом месте документа допускается как переопределение любого из элементов массива (листинг 4.18, первая строка), так и изменение его размерности. Чтобы поменять размерность всего массива, просто присвойте любое значение новому элементу, индексы которого выходят за границы прежней размерности (вторая строка листинга 4.18).
В местозаполнители элементов матрицы допускается вставка любых функций, подобно применению обычного оператора присваивания.
Листинг 4.18. Изменение матрицы (продолжение листинге 4.17)
Создание тензора
Определение отдельных элементов — удобный способ создания тензоров (многоиндексных массивов). В Mathcad имеется непосредственная возможность работы только с векторами и матрицами. Тем не менее, можно создать тензор путем определения вложенного массива (nested array). Для этого необходимо присвоить каждому элементу матрицы значение в виде другого вектора или матрицы (листинг 4.19). Пользователь должен лишь позаботиться о корректности задания индексов тензора и не запутаться в индексировании вложенных матриц (последняя строка листинга).
Листинг 4.19. Создание тензора и доступ к его элементам
Процесс создания тензора автоматизирует применение ранжированных переменных.
Обратите внимание, что Mathcad по умолчанию не отображает трехмерную структуру тензора (предпоследняя строка листинга 4.19), а вместо этого показывает информацию о размерах каждого элемента матрицы s. Развернуть вложенные массивы можно с помощью команды Format / Result / Display Options (Формат / Результат / Опции отображения), устанавливая флажок Expand Nested Arrays (Разворачивать вложенные массивы) на вкладке Display Options (Опции отображения).
