Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции геологам.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
809.98 Кб
Скачать

Ипо для некоторых индикаторов приведены в таблице:

Индикатор

ИПО

Изменение окраски

Метиловый оранжевый

(метилоранж)

3,0 ÷ 4,4

красный – желтый

Метиловый красный

(метилрот)

4,2 ÷ 6,2

красный – желтый

Лакмус

6,0 ÷ 8,0

красный – синий

Фенолфталеин

8,0 ÷ 10,0

бесцветный - красный

Используя разные индикаторы с достаточной точностью можно определить кислотность среды, например, если лакмус в растворе имеет синюю окраску, а фенолфталеин бесцветный, то раствор слабощелочной (рН ~ 8).

В лабораторной практике удобно определять кислотность среды с помощью универсальной индикаторной бумаги, которая изменяет свою окраску в зависимости от рН раствора – красная в кислых, бледно-зеленоватая в нейтральной и синяя в щелочных средах. Сравнивая окраску индикаторной бумаги с эталонной цветовой шкалой можно определить рН реакционной смеси с точностью до единицы.

Действие одноименных ионов

Степень электролитической диссоциации вещества зависит не только от его концентрации в растворе, но и от присутствия в растворе других электролитов. Степень диссоциации слабого электролита понижается при введении в раствор сильного электролита, содержащего одноименный (т.е. общий) ион с исходным электролитом. Влияние одноименного иона легко объясняется с позиций закона ЗДМ.

Рассмотрим равновесие в растворе аммиака:

Константу равновесия этой реакции можно представить уравнением

Если к раствору аммиака прилить сильный электролит, содержащий одноименные ионы, например, хлорид или нитрат аммония, то концентрация катионов NH4+ повысится во много раз. Благодаря этому числитель уравнения возрастает и величина дроби станет больше константы диссоциации. Нарушенное таким образом равновесие будет восстанавливаться в результате соединения ионов NH4+ и OH- в недиссоциированные молекулы NH4OH.

Следовательно, степень диссоциации слабого электролита понижается при введении в раствор какого-либо сильного электролита, содержащего одноименный с ним ион.

В рассмотренном случае концентрация ионов OH- понизится и раствор аммиака в присутствии NH4Cl или NH4NO3 будет вести себя как еще более слабое основание. Для понижения концентрации ионов H+ в растворе уксусной кислоты достаточно прибавить к нему немного соли этой кислоты, например, ацетата натрия, содержащей одноименный ион CH3COO-.

В аналитической химии иногда необходимо поддерживать в исследуемом растворе определенную, приблизительно постоянную концентрацию ионов , которая не должна изменяться при хранении, разбавлении раствора, добавлении к нему небольших количеств сильной кислоты или щелочи.

Свойства некоторых растворов сохранять практически постоянную концентрацию ионов водорода при добавлении небольших количеств кислоты, щелочи, а также при разбавлении, называют буферным действием, а растворы, которые обладают таким свойством – буферными растворами. Они представляют собой смеси электролитов, содержащие одноименные ионы. Например, ацетатный буферный раствор – смесь уксусной кислоты и ацетата натрия , аммонийный буферный раствор – смесь и .

В качестве примера рассмотрим ацетатную буферную смесь, состоящую из слабой кислоты ( ) и сопряженного с ней основания ( ). В растворе, содержащем сопряженную пару, устанавливаются следующие равновесия

.

Добавление к буферному раствору щелочи приводит к связыванию и ионизации новых молекул уксусной кислоты, что восстановит состояние исходной буферной системы. Добавление кислоты приведет к связыванию ацетат-ионов, полученных в результате ионизации соли, в молекулу слабого электролита – уксусную кислоту

Таким образом, сильная кислота заменяется слабой, уксусной и, как следствие, концентрация ионов водорода изменяется мало. Не происходит заметного изменения pH и при разбавлении ацетатного буферного раствора водой, т.к. концентрации слабой кислоты и сопряженного с ней основания изменяются пропорционально.

При добавлении щелочи к аммонийному буферному раствору, состоящего из раствора аммиака и хлорида аммония, концентрация ионов должна сильно увеличиться. Но так как аммонийный буферный раствор содержит большое число катионов , образуемых при диссоциации хлорида аммония:

,

эти катионы связывают ионы c образованием малодиссоциированных молекул . Таким образом, концентрация ионов в растворе не увеличивается и величина pH остается практически постоянной.

При взаимодействии компонентов аммонийного буферного раствора с сильной кислотой ионы соединяются с ионами гидроксида аммония ( ) и образуют малодиссоциирующие молекулы воды. Расход ионов возмещается диссоциацией , и pH раствора почти не изменяется. Следовательно, при добавлении к аммонийному буферному раствору небольших количеств щелочи или сильной кислоты pH раствора практически не изменяется.

Количественной характеристикой способности буферного раствора поддерживать заданную величину pH является буферная емкость, под которой понимают количество молей сильной кислоты или сильного основания, прибавление которого к 1 л буферного раствора изменяет его pH на единицу.

Варьируя концентрацию слабой кислоты и ее соли, удается получить буферные растворы с заданными величинами pH.

В животных и растительных организмах также действуют сложные буферные системы, поддерживающие постоянными значения pH крови, лимфы и других жидкостей. Буферными свойствами обладает и почва, которая способна противостоять внешним факторам, изменяющим pH почвенного раствора, например, при введении в почву кислот или оснований.

Протолитические равновесия в растворах солей (гидролиз солей).

Гидролиз солей – это взаимодействие ионов растворенной соли с молекулами воды (ионами Н+ и ОН-, возникающими при диссоциации воды Н2О ↔ Н+ + ОН-), в результате которого образуются малодиссоциированные соединения (слабые кислоты и слабые основания). Реакция гидролиза процесс обратимый и в растворе устанавливается химическое равновесие между продуктами реакции и исходным соединением, которое характеризуется соответствующей константой равновесия – константой гидролиза Kh.

Количественно гидролиз характеризуется степенью гидролиза h, которая равна отношению числа прогидролизровавшихся частиц nгидр к общему числу исходных ионов nисх и численно выражается в долях единицы или процентах(%):

или

Степень гидролиза увеличивается с уменьшением концентрации гидролизующейся соли (разбавлением) и с ростом температуры (нагревание).

Соли, содержащие катионы сильных оснований и анионы сильных кислот (например, NaCl, KNO3, Li2SO4, NaClO4, BaCl2, CaBr2 и др.), не гидролизуются, так как не происходит связывания ионов Н+ и ОН-, возникающих в результате диссоциации воды. Водные растворы таких солей имеют нейтральную реакцию (рН = 7).

Гидролизу в водных растворах подвергаются соли, содержащие катионы слабых оснований и анионы слабых кислот.

1. Гидролиз солей, содержащих катион сильного основания и анион слабой одноосновной кислоты (МА). Такие соли нацело диссоциируют в водном растворе с образованием катиона сильного основания М+ и аниона слабой кислоты А-:

МА → М+ + А-

Анион слабой кислоты гидролизуется по уравнению:

А- + Н2О ↔ НА + ОН-

Так как в этом случае при гидролизе образуются слабая кислота (НА) и сильное основание (ОН-), то водные растворы такого типа солей имеют щелочную реакцию (рН > 7). В соответствии с принципом Ле-Шателье, чтобы подавить гидролиз в анализируемый раствор прибавляют сильное основание (щелочь), а усиление гидролиза достигается добавлением сильной кислоты (кислотный гидролиз).

Концентрационная константа равновесия реакции гидролиза аниона слабой кислоты имеет вид:

Так как , то

Полученная константа Kh есть константа гидролиза аниона слабой кислоты. Если умножить числитель и знаменатель полученного выражения на получим:

,

Где Ка – константа диссоциации слабой кислоты HA.

Таким образом, анион слабой одноосновной кислоты A- является сопряженным с кислотой НА слабым основанием с константой основности Kb, равной константе его гидролиза Kh. При этом, чем слабее образующаяся в результате гидролиза кислота (меньше Ka), тем более сильным основанием является анион этой кислоты и тем в большей степени идет гидролиз.

Примерами солей гидролизующихся по описанному типу являются НСООK, СН3СООNa, KNO2, NaF, LiClO, KCN, С6Н5ОNa и др.

Поскольку такого типа соли ведут себя при гидролизе как слабые основания, их применяют в практике химического анализа для снижения кислотности среды. Например, при обнаружении и отделении ионов бария по реакции с дихроматом калия происходит сильное подкисление реакционной смеси, что препятствует образованию желтого осадка хромата бария:

2Ba2+ + Cr2O72- + H2O ↔ 2BaCrO4↓ + 2H+

Для создания в растворе значения рН = 4-5, необходимого для полного осаждения ионов бария, добавляют ацетат натрия. При этом избыток СН3СООNa способствует образованию ацетатной буферной смеси, поддерживающей необходимое значение рН.

2. Гидролиз солей, содержащих катион слабого однокислотного основания и анион сильной кислоты (ВХ). Такие соли нацело диссоциируют в водном растворе с образованием катиона слабого основания В+ и аниона сильной кислоты Х-:

ВХ → В+ + Х-

Катион слабого основания гидролизуется по уравнению:

В+ + Н2О ↔ ВОН + Н+

Так как при этом в реакции гидролиза образуются слабое основание (ВОН) и сильная кислота (Н+), то водные растворы такого типа солей имеют кислую реакцию (рН < 7). В соответствии с принципом Ле-Шателье, чтобы в этом случае подавить гидролиз в анализируемый раствор прибавляют сильную кислоту, а усиление гидролиза достигается добавлением сильного основания (щелочной гидролиз).

Константа гидролиза в этом случае будет

,

где - константа диссоциации слабого основания.

Таким образом, катион слабого однокислотного основания В+ является сопряженной с основанием ВОН слабой кислотой, с константой кислотности Kа, равной константе его гидролиза Kh. При этом, чем слабее образующееся в результате гидролиза основание (меньше Kb), тем более сильной кислотой является катион этого основания и тем в большей степени идет гидролиз.

Примерами солей гидролизующихся по описанному типу являются NH4Cl, AgNO3, соли органических аминов (например, CH3NH3NO3, (C2H5)2NH2Cl, C6H5NH3Cl и др.).

Поскольку такого типа соли ведут себя при гидролизе как слабые кислоты, их применяют в практике химического анализа для подкисления щелочных растворов. Например, при обнаружении ионов алюминия к сильно щелочному раствору, содержащему гидроксокомплекс алюминия (рН > 10), добавляют хлорид аммония до достижения значения рН = 9, при котором образуется белый аморфный осадок гидроксида алюминия:

[Al(OH)4]- + NH4+ → Al(OH)3↓ + NH4OH

При этом избыток NH4Cl способствует образованию аммонийной буферной смеси, поддерживающей необходимое значение рН.

3. Гидролиз солей, содержащих катион слабого однокислотного основания и анион слабой одноосновной кислоты (ВА). Гидролиз такого типа солей происходит с участием обоих ионов, входящих в состав соли:

В+ + А- + Н2О ↔ ВОН + НА

При этом кислотность раствора определяется силой образовавшихся кислоты и основания. Если кислота НА сильнее, чем основание ВОН (Ka > Kb), то есть она диссоциирует в большей степени, чем основание, то среда будет кислая (рН < 7), и наоборот, при Kb > Ka – щелочная (рН > 7). Когда сила кислоты и основания равны (Ka = Kb), например, в случае гидролиза ацетата аммония CH3COONH4, реакция раствора нейтральная (рН = 7).

В этом случае константа гидролиза имеет вид:

Примерами солей гидролизующихся по описанному типу являются NH4CN, NH4ClO, AgNO2, CH3COONH4, C6H5NH3F и др.

4. Гидролиз солей, содержащих катион сильного однокислотного основания и анион слабой многоосновной кислоты nА). Гидролиз такого типа солей разберем на примере соли двухосновной кислоты М2А, так как применяемые при этом допущения и методы расчета справедливы и для солей кислот большей основности. Соли М2А нацело диссоциируют в водном растворе с образованием катиона сильного основания М+ и аниона слабой двухосновной кислоты А2-, который гидролизуется ступенчато по уравнениям:

А2- + Н2О ↔ НА- + ОН- (I ступень)

НА- + Н2О ↔ Н2А + ОН- (II ступень)

Так как в этом случае при гидролизе образуются слабые кислоты (НА- и Н2А ) и сильное основание (ОН-), то водные растворы такого типа солей имеют щелочную реакцию (рН > 7). Как и в случае солей одноосновных слабых кислот в соответствии с принципом Ле-Шателье, чтобы подавить гидролиз в анализируемый раствор прибавляют сильное основание (щелочь), а усиление гидролиза достигается добавлением сильной кислоты.

Каждая ступень гидролиза характеризуется ступенчатой константой гидролиза, которые для первой и второй ступени имеют вид:

Так как Kа1 > Ka2, то Kh1 > Kh2. Поэтому при расчете равновесных концентраций частиц в растворе гидролизующейся соли М2А можно вторую ступень гидролиза не учитывать и все расчеты проводить по первой ступени, аналогично солям одноосновных слабых кислот МА.

Примерами солей гидролизующихся по описанному типу являются Na2S, K2CO3, Na2SO3, Na2C2O4 и др.

Аналогичным образом гидролизуются соли трехосновных кислот, например, K3PO4, Na3AsO4, Na3SbO3 и т.д. В этом случае гидролиз также преимущественно протекает по первой ступени и все расчеты проводят с использованием .