- •Кислотно-основная классификация катионов
- •Скорость химической реакции и химическое равновесие.
- •Основные положения теории растворов электролитов. Общая (аналитическая) концентрация и активность ионов в растворе, их взаимосвязь.
- •Степень электролитической диссоциации
- •Константа диссоциации слабого электролита
- •Коэффициент активности и ионная сила
- •Кислотно-основные равновесия в водных растворах. Водородный показатель рН и кислотность среды. Контроль за кислотностью среды.
- •Ипо для некоторых индикаторов приведены в таблице:
- •Действие одноименных ионов
- •Произведение растворимости
- •Поведение сильных и слабых одноосновных кислот в водных растворах.
- •Поведение сильных и слабых однокислотных оснований в водных растворах.
- •3. Слабые многокислотные основания
- •Поведение сильных и слабых многоосновных кислот в водных растворах
- •4. Расчет pH смеси кислот или оснований
- •Количественный анализ
- •Гравиметрический анализ
- •Титриметрический анализ
- •Индикаторы в методе кислотно-основного титрования
- •Комплексонометрическое титрование
- •(Окраска 1) (окраска 2)
- •(Окраска 2) (окраска 1)
- •Способы комплексонометрического титрования.
- •Окислительно-восстановительное титрование
- •Перманганатометрия
- •Физико-химические методы анализа
- •Оптические и спектральные методы
- •Фотометрические методы анализа
- •Электрохимические методы анализа
- •Хроматографические методы анализа. Классификация методов, применение их в анализе.
- •Основная литература
- •Дополнительная литература
Перманганатометрия
В сильнокислой среде перманганат-ионы обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь до Mn(II). Поэтому KMnO4 применяют для определения многих восстановителей: Fe(II), H2O2, NO2-, Sb(III), органических кислот. Используя метод заместительного титрования, определяют катионы, образующие малорастворимые оксалаты (Ca2+, Zn2+, Co2+ и др.).
В зависимости от кислотности растворов реакция восстановления перманганат-иона протекает различно. В кислой среде реакция протекает по уравнению
(
;
в слабощелочной или нейтральной средах:
;
В щелочной среде:
Все прямые определения восстановителей обычно проводят в сернокислой среде (0,05 М H2SO4 и выше) при 70 - 80º С. Для того чтобы в процессе титрования сохранялась высокая температура, объем титруемого раствора берут больше обычного: ~ 150 мл.
При титровании перманганатом калия, как правило, не применяют индикаторы, так как реагент сам окрашен и является чувствительным индикатором: 0,1 мл 0,01 М раствора KMnO4 окрашивает 100 мл воды в бледно-розовый цвет.
Физико-химические методы анализа
Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выполнения аналитической реакции.
Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фармацевтической, металлургической, полупроводниковой, атомной и других отраслей промышленности, требовавших повышения чувствительности методов до 10-8 – 10-9 %, их селективности и экспрессности, что позволило бы управлять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.
Ряд современных физико-химических методов анализа позволяют одновременно в одной и той же пробе выполнять как качественный, так и количественный анализ компонентов. Точность анализа современных физико-химических методов сопоставима с точностью классических методов, а в некоторых, например в кулонометрии, она существенно выше.
К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего значения и применяются там, где нет ограничений в скорости выполнения анализа и требуется высокая его точность при высоком содержании анализируемого компонента.
В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, величина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:
- электрохимические;
- оптические и спектральные;
- хроматографические.
Оптические и спектральные методы
Эти методы основаны на способности атомов и молекул вещества испускать, поглощать или рассеивать электромагнитное излучение.
По типу оптических явлений различают спектроскопию испускания, поглощения и рассеяния. Спектроскопию испускания, в свою очередь, подразделяют на эмиссионную и люминесцентную.
По изучаемым объектам спектроскопию подразделяют на ядерную, атомную и молекулярную.
Эмиссионный спектральный анализ основан на изучении спектров испускания (излучения) или эмиссионных спектров различных веществ. В этом методе анализируемую пробу сжигают в пламени газовой горелки (≈2000-3000ºС), электрической дуги (≈5000-7000ºС) или высоковольтной искры(≈7000-15000ºС). Анализируемое вещество испаряется, диссоциирует на составляющие атомы или ионы, которые, возбуждаясь, дают излучение. Свет, излучаемый раскаленными газами или парами, проходя через призму спектрографа, преломляется и разлагается на компоненты. Экспериментатор при этом наблюдает ряд отдельных цветных линий, составляющих вместе так называемый линейчатый спектр. Линейчатый спектр каждого элемента характеризуется постоянными спектральными линиями, соответствующими лучам с определенной длиной волны и частотой колебаний. По наличию этих линий можно судить о присутствии того или иного элемента в анализируемом веществе. Количественное определение элементов основано на измерении интенсивности характерных спектральных линий того или иного элемента, входящего в состав анализируемого вещества. При этом используется зависимость интенсивности спектральных линий от концентрации определяемого элемента.
Фотометрия пламени (или эмиссионная пламенная фотометрия) – метод, основанный на измерении интенсивности излучения атомов возбуждаемого вещества в пламени. Исследуемый раствор распыляют (действием сжатого воздуха или кислорода) и в виде аэрозоля вводят в бесцветное пламя газовой горелки, работающей на ацетилене, водороде или пропане. Если раствор содержит ионы легко возбуждаемых элементов, то в пламени возникает характерное для того или иного элемента излучение, и пламя окрашивается. Интенсивность излучения прямо пропорциональна концентрации определяемого элемента в растворе. Фотометрию пламени используют чаще всего для определения щелочных и щелочноземельных металлов (лития, калия, натрия, рубидии
Люминесцентный (флуоресцентный) анализ использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей. Люминесцируют не все вещества, однако после обработки специальными реактивами люминесценция наблюдается у многих веществ (хемилюминесценция). Этот метод обладает высокой чувствительностью.
Как известно, взаимодействие сопровождается поглощением энергии, в результате чего в зависимости от энергии излучения могут происходить изменения в ядрах, электронах, атомах и молекулах. А соответственно изменяются какие-либо параметры взаимодействующей системы. Именно на этом основаны физико-химические или физические методы исследования вещества. Нас интересует взаимодействие анализируемого объекта с излучением в бл.УФ, видимой, бл.ИК областях спектра.
При этом выделяют следующие группы методов:
Атомно-адсорбционный анализ – основанный на поглощении световой энергии атомами анализируемых веществ.
Молекулярно-абсорбционный анализ – анализ по поглощению света молекулами анализируемого вещества и сложными ионами (в бл.УФ, видимой, бл.ИК). К нему относим фотоэлектроколориметрию, спектрофотометрию, ИК-спектроскопию.
Анализ по поглощению и рассеиванию световой энергии взвешанными частицами анализируемого вещества, т.е. дисперсными системами (турбидиметрия, нефелометрия).
Люминесцентный анализ – основанный на измерении излучения, выделенного возбужденными частицами исследуемого объекта.
Молекулярно-абсорбционный спектральный анализ включает в себя спектрофотометрический и фотоколориметрический виды анализа.
