- •Рецензенты:
- •Оглавление
- •Введение к курсу лекций
- •Раздел 1. Металловедение и термическая обработка металлов
- •Тема 1. Строение и свойства металлов
- •1. Общие сведения
- •2. Физические свойства металлов
- •3. Химические свойства металлов
- •4. Технологические свойства металлов
- •5. Эксплуатационные свойства металлов
- •6. Кристаллическое строение металлов
- •7. Изотропия и анизотропия
- •8. Аллотропия или полиморфные превращения
- •9. Магнитные превращения
- •Тема 2. Дефекты кристаллического строения металлов
- •1. Точечные дефекты
- •2. Линейные дефекты
- •3. Поверхностные дефекты
- •Тема 3. Кристаллизация металлов
- •2. Скорость охлаждения и размер зерна
- •3. Строение металлического слитка
- •Тема 4. Общая теория сплавов
- •1. Понятие о сплавах и методах их получения
- •2. Основные понятия в теории сплавов
- •3. Особенности строения сплавов
- •4. Кристаллизация сплавов
- •5. Диаграмма состояния
- •Тема 5. Фазовое и структурное состояние железоуглеродистых сплавов
- •1. Компоненты и фазы в системе железо-углерод
- •2. Диаграмма железо-цементит и фазовые превращения
- •Тема 6. Пластическая деформация и механические свойства
- •1. Понятие о механических свойствах
- •2. Виды напряжений
- •3. Механические свойства, определяемые при статических испытаниях
- •4. Твердость металлов
- •Тема 7. Теория и технология термической обработки стали
- •1. Отжиг первого и второго рода. Нормализация
- •2. Закалка стали
- •3. Отпуск стали
- •4. Обработка холодом
- •Тема 8. Химико-термическая обработка (хто) стали
- •1. Общая характеристика процессов хто стали
- •2. Цементация стали
- •3. Азотирование стали
- •4. Цианирование
- •5. Диффузионная металлизация
- •Тема 9. Конструкционные стали и сплавы
- •1. Области применения и свойства конструкционных сталей
- •2. Углеродистые конструкционные стали
- •3. Стали обыкновенного качества
- •4. Качественные углеродистые стали
- •5. Легирующие элементы в конструкционных сталях
- •6. Маркировка легированных конструкционных сталей
- •Тема 10. Инструментальные стали
- •1. Классификация и характеристика инструментальных сталей
- •2. Маркировка инструментальных сталей
- •2. Стали для режущего инструмента
- •3. Быстрорежущие стали
- •4. Стали для измерительного инструмента
- •2. Зонная теория твердых тел
- •Тема 12. Диэлектрики
- •1. Диэлектрики в электрическом поле
- •2. Поляризация диэлектрика и относительная диэлектрическая проницаемость
- •3. Основные виды поляризации диэлектриков
- •4. Диэлектрическая проницаемость газообразных, жидких и твердых диэлектриков
- •Тема 13. Проводниковые материалы
- •1. Классификация проводниковых материалов и их основные свойства
- •2. Классификация металлических проводников
- •3. Классификация неметаллических проводников
- •4. Классификация жидких и газообразных проводников
- •5. Электропроводность металлов
- •6. Основные свойства металлических проводников
- •7. Материалы высокой проводимости
- •8. Сверхпроводники и криопроводники
- •Тема 14. Полупроводниковые материалы
- •1. Общие сведения о полупроводниках
- •2. Электропроводность полупроводников
- •3. Примесные полупроводники
- •Тема 15. Магнитные материалы
- •1. Магнитное поле и его характеристики
- •2. Классификация магнитных веществ
- •Заключение по курсу лекций
- •Список использованной литературы
2. Закалка стали
Закалка заключается в нагреве стали до температур, превышающих температуру фазовых превращений, выдержке при этой температуре и последующем быстром охлаждении. Цель закалки – повышение твердости и прочности стали. При этом снижается вязкость и пластичность.
Обычно в результате закалки образуется мартенситная структура. Поэтому охлаждать сталь следует с определенной скоростью, чтобы кривая охлаждения не пересекала С-образные кривые диаграммы изотермического превращения аустенита. Наименьшая скорость закалки, при которой образуется мартенсит, называется критической скоростью закалки. Для достижения высокой скорости охлаждения закаливаемые детали из углеродистой стали погружают в воду. Легированные стали охлаждают в минеральном масле, так как у них критическая скорость закалки значительно ниже.
Выбор температуры закалки. Температура нагрева при закалке стали зависит от ее химического состава. В доэвтектоидных сталях, нагрев производится на 30-50 °С выше точек Ас3 (рисунок 23). При этом образуется аустенит, который при последующем охлаждении со скоростью выше критической, превращается в мартенсит. Такую закалку называют полной. При нагреве доэвтектоидной стали до температуры в интервале АС3 - AС1 в структуре мартенсита сохраняется часть оставшегося при закалке феррита, снижающего твердость закаленной стали. Такую закалку называют неполной. Для закалки заэвтектоидной стали наилучшей температурой является нагрев на 30-50 °С выше АС1 , т.е. неполная закалка (рисунок 23). В этом случае в стали сохраняется цементит и при нагреве, и при охлаждении, а это способствует повышению твердости, так как твердость цементита больше, чем твердость мартенсита. Нагрев заэвтектоидной стали до температуры выше точек АС3 (полная закалка) является излишним, так как твердость при этом меньше, чем при закалке выше АС1. Кроме того, при охлаждении после нагрева до более высоких температур могут возникнуть большие внутренние напряжения.
Массовое содержание углерода, %
Рисунок 23. Температурный интервал закалки и отпуска стали:
I – полная закалка; II – неполная закалка; III – высокий отпуск.
Закаливаемость и прокаливаемость стали. Способность стали закаливаться на мартенсит называется закаливаемостью. Она характеризуется значением твердости, приобретаемой сталью после закалки, и зависит от содержания углерода. Стали с низким содержанием углерода (до 0,3 %) практически не закаливаются и закалка для них не применяется.
Прокаливаемостью называется глубина проникновения закаленной зоны. При сквозной прокаливаемости все сечение закаливаемой детали приобретает однородную мартенситную структуру. При малой прокаливаемости закаливается только поверхностный слой определенной толщины, а сердцевина остается мягкой и непрочной. Отсутствие сквозной прокаливаемости объясняется тем, что при охлаждении сердцевина остывает медленнее, чем поверхность. Прокаливаемость характеризует критический диаметр dk , т.е. максимальный диаметр детали цилиндрического сечения, которая прокаливается насквозь в данном охладителе. Прокаливаемость зависит от химического состава стали. С повышением содержания углерода прокаливаемость увеличивается. Легированные стали характеризуются значительно более высокой прокаливаемостью, чем углеродистые. На прокаливаемость также влияет скорость охлаждения. Повышение скорости охлаждения приводит к увеличению прокаливаемости. Поэтому при закалке в воде прокаливаемость значительно выше, чем при закалке в масле. Повышение размеров закаливаемой детали приводит к значительному уменьшению прокаливаемости.
Способы охлаждения. Идеальное охлаждение при закалке должно характеризоваться следующими особенностями. Для получения структуры мартенсита следует переохладить аустенит путем быстрого охлаждения стали в интервале температур наименьшей его устойчивости, т. е. при температуре 500-650 0С. В зоне температур мартенситного превращения (ниже 240 °С) выгоднее применять замедленное охлаждение, так как образующиеся структурные напряжения, связанные с получением новой кристаллической решетки, могут успеть выровняться, а твердость мартенсита не снизится.
По способу охлаждения различают виды закалки: в одной среде, в двух средах (прерывистая), ступенчатая и изотермическая.
Закалка в одной среде проще и применяется чаще для изделий несложной формы. Недостаток закалки в одной среде – возникновение значительных внутренних напряжений.
При прерывистой закалке изделие охлаждают, сначала в одной среде (например, в воде до 300-400°С), а затем в масле или на воздухе. При этом внутренние напряжения меньше, но возникают затруднения при определении времени выдержки в первом охладителе. Ступенчатую закалку производят путем быстрого охлаждения в соляной ванне, температура которой немного выше 240-250°С (соответствующей началу мартенситного превращения), затем дают выдержку при данной температуре и окончательно охлаждают на воздухе. Короткая остановка при охлаждении способствует выравниванию температуры по всему сечению детали, что уменьшает напряжения, возникающие в процессе закалки. Ступенчатую закалку применяют для деталей из углеродистой стали небольшого сечения (8-10 мм). Для сталей, имеющих небольшую критическую скорость закалки, ступенчатая закалка применяется в основном для изделий большого сечения.
При изотермической закалке, как и при ступенчатой, детали переохлаждают в среде, нагретой выше температуры начала мартенситного превращения, однако выдержка при этой температуре продолжительная – до полного распада аустенита. Получается структура не мартенсита, а близкого по твердости, но более пластичного бейнита. Дальнейшее охлаждение производят на воздухе. Преимущества изотермической закалки заключаются в большей вязкости, отсутствии трещин, минимальном короблении. Изотермическую закалку применяют для изделий сложной формы.
Важно не только правильно подобрать способ охлаждения, но применять правильные способы погружения деталей в охлаждающую среду. Например длинные изделия вытянутой формы (сверла, метчики) нужно погружать в строго вертикальном положении, чтобы избежать коробления.
