- •Рецензенты:
- •Оглавление
- •Введение к курсу лекций
- •Раздел 1. Металловедение и термическая обработка металлов
- •Тема 1. Строение и свойства металлов
- •1. Общие сведения
- •2. Физические свойства металлов
- •3. Химические свойства металлов
- •4. Технологические свойства металлов
- •5. Эксплуатационные свойства металлов
- •6. Кристаллическое строение металлов
- •7. Изотропия и анизотропия
- •8. Аллотропия или полиморфные превращения
- •9. Магнитные превращения
- •Тема 2. Дефекты кристаллического строения металлов
- •1. Точечные дефекты
- •2. Линейные дефекты
- •3. Поверхностные дефекты
- •Тема 3. Кристаллизация металлов
- •2. Скорость охлаждения и размер зерна
- •3. Строение металлического слитка
- •Тема 4. Общая теория сплавов
- •1. Понятие о сплавах и методах их получения
- •2. Основные понятия в теории сплавов
- •3. Особенности строения сплавов
- •4. Кристаллизация сплавов
- •5. Диаграмма состояния
- •Тема 5. Фазовое и структурное состояние железоуглеродистых сплавов
- •1. Компоненты и фазы в системе железо-углерод
- •2. Диаграмма железо-цементит и фазовые превращения
- •Тема 6. Пластическая деформация и механические свойства
- •1. Понятие о механических свойствах
- •2. Виды напряжений
- •3. Механические свойства, определяемые при статических испытаниях
- •4. Твердость металлов
- •Тема 7. Теория и технология термической обработки стали
- •1. Отжиг первого и второго рода. Нормализация
- •2. Закалка стали
- •3. Отпуск стали
- •4. Обработка холодом
- •Тема 8. Химико-термическая обработка (хто) стали
- •1. Общая характеристика процессов хто стали
- •2. Цементация стали
- •3. Азотирование стали
- •4. Цианирование
- •5. Диффузионная металлизация
- •Тема 9. Конструкционные стали и сплавы
- •1. Области применения и свойства конструкционных сталей
- •2. Углеродистые конструкционные стали
- •3. Стали обыкновенного качества
- •4. Качественные углеродистые стали
- •5. Легирующие элементы в конструкционных сталях
- •6. Маркировка легированных конструкционных сталей
- •Тема 10. Инструментальные стали
- •1. Классификация и характеристика инструментальных сталей
- •2. Маркировка инструментальных сталей
- •2. Стали для режущего инструмента
- •3. Быстрорежущие стали
- •4. Стали для измерительного инструмента
- •2. Зонная теория твердых тел
- •Тема 12. Диэлектрики
- •1. Диэлектрики в электрическом поле
- •2. Поляризация диэлектрика и относительная диэлектрическая проницаемость
- •3. Основные виды поляризации диэлектриков
- •4. Диэлектрическая проницаемость газообразных, жидких и твердых диэлектриков
- •Тема 13. Проводниковые материалы
- •1. Классификация проводниковых материалов и их основные свойства
- •2. Классификация металлических проводников
- •3. Классификация неметаллических проводников
- •4. Классификация жидких и газообразных проводников
- •5. Электропроводность металлов
- •6. Основные свойства металлических проводников
- •7. Материалы высокой проводимости
- •8. Сверхпроводники и криопроводники
- •Тема 14. Полупроводниковые материалы
- •1. Общие сведения о полупроводниках
- •2. Электропроводность полупроводников
- •3. Примесные полупроводники
- •Тема 15. Магнитные материалы
- •1. Магнитное поле и его характеристики
- •2. Классификация магнитных веществ
- •Заключение по курсу лекций
- •Список использованной литературы
Тема 7. Теория и технология термической обработки стали
План лекции
Отжиг первого и второго рода. Нормализация
Закалка стали
Отпуск стали
Обработка холодом
1. Отжиг первого и второго рода. Нормализация
После литья, проката, ковки и других видов обработки происходит неравномерное охлаждение заготовок. Результатом является неоднородность структуры и свойств в различных местах заготовок, а также появление внутренних напряжений. Кроме того, отливки при затвердевании получаются неоднородными по химическому составу. Для устранения таких дефектов производят термообработку, к которой относятся отжиг и нормализация.
Отжиг заключается в нагреве заготовок или изделий до определенной температуры, выдержке их при данной температуре с последующим медленным охлаждением (со скоростью около 100-2000С в час для углеродистых сталей и 30-1000С в час для легированных сталей). При этом заготовки или изделия получают устойчивую структуру без остаточных напряжений. Цели отжига – снятие внутренних напряжений, устранение структурной и химической неоднородности, снижение твердости и улучшение обрабатываемости, подготовка к последующей операции термообработки. Отжиг бывает полный, неполный, диффузионный, рекристаллизационный, низкий, изотермический и нормализационный. По приведенной выше классификации диффузионный, рекристаллизационный и низкий виды отжига относятся к отжигу первого рода, а остальные виды – к отжигу второго рода. Температуры нагрева стали отжига второго рода связаны с положением линий диаграммы Fe-Fe3C (критических точек). Низкая скорость охлаждения обычно достигается при остывании стали вместе с печью.
Полный отжиг применяется для доэвтектоидных сталей. Осуществляется нагревом стали на 30-50°С выше точки Ас3 (рисунок 22). При этом происходит полная перекристаллизация стали и уменьшение величины зерна. Исходная структура из крупных зерен феррита и перлита при нагреве превращается в аустенитную, а затем при медленном охлаждении в структуру из мелких зерен феррита и перлита. Повышение температуры нагрева привело бы к росту зерна. При полном отжиге снижается твердость и прочность стали, а пластичность повышается.
При неполном отжиге нагрев производится выше точки Ас1, но ниже Ас3 (рисунок 22). Он производится, если исходная структура не очень крупнозерниста или не надо изменить расположение ферритной (в доэвтектоидных сталях) или цементитной (в заэвтектоидных сталях) составляющей. При этом происходит лишь частичная перекристаллизация – только перлитной составляющей стали. Для доэвтектоидных сталей неполный отжиг применяют ограниченно, лишь для улучшения обрабатываемости резанием.
Для заэвтектоидных сталей неполный отжиг применяется для получения зернистой формы перлита вместо пластинчатой. В этом случае его часто называют отжигом на зернистый перлит или сфероидизацией. Такой отжиг осуществляют маятниковым способом (температуру несколько раз изменяют вблизи точки Ас1, то перегревая выше нее на 30-50 °С, то охлаждая ниже на 30-50 °С) или путем длительной выдержки (5-6 часов) при температуре на 10-30 °С выше точки Ас1 и последующего медленного охлаждения. После такого отжига цементит, обычно присутствующий в структуре в виде пластин, приобретает зернистую форму. Сталь со структурой зернистого перлита обладает большей пластичностью, меньшей твердостью и прочностью по сравнению с пластинчатым перлитом. Отжиг на зернистый перлит применяется для подготовки сталей к закалке или для улучшения их обрабатываемости резанием.
Диффузионный отжиг (гомогенизация) заключается в нагреве стали до 1000-1100 °С, выдержке (10-15 часов) при этой температуре и последующем медленном охлаждении (рисунок 22). В результате диффузионного отжига происходит выравнивание неоднородности стали по химическому составу. Столь высокая температура необходима для ускорения диффузионных процессов. Благодаря высокой температуре нагрева и продолжительной выдержке получается крупнозернистая структура, которая может быть устранена последующим полным отжигом.
Содержание углерода, %
Рисунок 22. Область температур нагрева для различных видов отжига:
I – диффузионный отжиг; II – неполный отжиг; III – полный отжиг; IV – низкий отжиг; V – нормализационный отжиг
Рекристаллизационный отжиг предназначен для снятия наклепа и внутренних напряжений после холодной деформации и подготовки структуры к дальнейшему деформированию. Нагрев необходимо осуществлять выше температуры рекристаллизации, которая для железа составляет 450 °С. Обычно для повышения скорости рекристаллизационных процессов применяют значительно более высокие температуры, которые, однако, должны быть ниже критической точки ас1. Поэтому температура нагрева для рекристаллизационного отжига стали составляет 650-700 °С. В результате рекристаллизационного отжига образуется однородная мелкозернистая структура с небольшой твердостью и значительной вязкостью.
Низкий отжиг применяется в тех случаях, когда структура стали удовлетворительна и необходимо только снять внутренние напряжения, возникающие при кристаллизации или после механической обработки. В этом случае сталь нагревают значительно ниже точки AС1 (200 - 600 °С).
Изотермический отжиг заключается в нагреве стали на 30-50 °С выше точки Ас3 (как при полном отжиге, рисунок 22), относительно быстром охлаждении до температуры несколько ниже точке АС1, (приблизительно 660- 680 °С), изотермической выдержке при этой температуре для получения равновесной перлитной структуры и последующем охлаждении на воздухе. Изотермический отжиг сокращает продолжительность перекристаллизации, что особенно важно для легированных сталей, которые требуют очень медленного охлаждения при полном отжиге. Помимо этого при изотермическом отжиге получается более однородная структура стали. Изотермическая выдержка производится в расплаве соли.
Нормализационный отжиг состоит из нагрева стали на 30-50 °С выше точки АС3 для доэвтектоидных и АС1 для заэвтектоидных сталей (рисунок 22), выдержки при этой температуре и последующего охлаждения на воздухе. Более быстрое охлаждение по сравнению с обычным отжигом приводит к более мелкозернистой структуре.
Нормализация – более дешевая термическая операция, чем отжиг, так как печи используют только для нагрева и выдержки. Для низкоуглеродистых сталей (до 0,3% С) разница в свойствах между нормализованным и отожженным состоянием практически отсутствует и эти стали лучше подвергать нормализации. При большем содержании углерода нормализованная сталь обладает большей твердостью и меньшей вязкостью, чем отожженная. Иногда нормализацию считают самостоятельной разновидностью термической обработки, а не видом отжига.
