Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ ЭиКМ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.55 Mб
Скачать

4. Твердость металлов

Определение твер­дости получило широкое применение в производствен­ных условиях, представляя собой наиболее простой и быстрый способ испытания механических свойств. Так как для измерения твердости испытывают поверхност­ные слои металла, то для получения правильного резуль­тату поверхность металла не должна иметь наружных дефектов (трещин, крупных царапин и т. д.). Существуют различные способы испытания на твер­дость. Ниже приведены три, наиболее распространенные из них.

Измерение твердости методом Бринелля. Сущность это­го способа заключается в том, что в поверхность испытуе­мого металла вдавливается стальной закаленный шарик диаметром 2,5; 5 или 10 мм под действием нагрузки со­ответственно 1,87; 7,5 и 30 кН. На поверхности образца остается отпечаток (рисунок 20, а), по диаметру которого определяют твердость. Диаметр отпечатка измеряют спе­циальной лупой с делениями. На практике пользуются специальными таблицами, которые дают перевод диамет­ра отпечатка в число твердости, обозначаемое НВ. Этот способ применяют главным образом для измерения твер­дости незакаленных металлов и сплавов: проката, поковок и отливок.

Рисунок 20. Измерение твердости методами

Бринелля (а), Роквелла (б) и Виккерса (в)

По твердости, измеренной этим методом, можно су­дить о прочности при растяжении, так как между твердо­стью и прочностью существует следующая зависимость: в = (0,34-0,36) НВ для поковок и проката; в = (0,3-0,4) НВ для стального литья; н = 0,12 НВ для серого чугуна. Та­ким образом, твердость может служить характеристикой прочностных свойств сплава.

Измерение твердости методом Роквелла. Измерение осуществляют путем вдавливания в испытуемый металл стального шарика диаметром 1,59 мм или конусного ал­мазного наконечника с углом при вершине 120° (рисунок 20, б). В отличие от метода Бринелля твердость по Роквеллу определяют не по диаметру отпечатка, а по глубине вдавливания шарика или конуса.

Вдавливание производится под действием двух по­следовательно приложенных нагрузок – предваритель­ной, равной 98,1 Н, и окончательной (общей) нагрузки, равной 98,1, 588,6 и 1471,5 Н. Твердость определяют по раз­ности глубин вдавливания отпечатков. Для испытания твердых металлов необходима нагрузка 1471,5 Н, а вдав­ливание стальным шариком нагрузкой 98,1 Н производят для определения твердости незакаленной стали, бронзы, латуни и других мягких материалов. Испытание сверх­твердых материалов производят алмазным наконечни­ком нагрузкой 588,6 Н. Глубина вдавливания измеряется автоматически, а твердость после измерения отсчитыва­ется по трем шкалам: А, В, С. Твердость (число твердо­сти) по Роквеллу обозначается следующим образом:

Испытание

Нагрузка, Н

Отсчет по шкале

Обозначение твердости

Алмазным конусом

1471,5

С

HRC

Алмазным конусом

588,6

А

HRA

Стальным шариком

981

В

HRB

Определение твердости по методу Роквелла имеет широкое применение, так как дает возможность испытывать мягкие и твердые металлы; размер отпечатков очень незначителен, поэтому можно испытывать готовые детали без их порчи.

Измерение твердости методом Виккерса. Этот метод по­зволяет измерять твердость как мягких, так и очень твер­дых металлов и сплавов. Он пригоден для определения твердости очень тонких поверхностных слоев (толщи­ной до 0,3 мм). В этом случае в испытуемый образец вдав­ливается четырехгранная алмазная пирамида с углом при вершине 136° (рисунок 20, в). При таких испытаниях мож­но применять нагрузки от 50 до 1200 Н. Измерение отпе­чатка производят по длине диагонали отпечатка рассмат­риваемого под микроскопом, входящим в прибор для определения твердости. Число твердости по Виккерсу обозначают HV, его находят по формуле:

где Р – нагрузка, Н;

d – длина диагонали отпечатка, мм.

На практике число твердости HV находят по таблицам. Кроме указанных методов измерения твердости суще­ствуют способы определения микротвердости микроско­пически малых объемов металла.

В настоящее время разработан прогрессивный способ определения твердости с помощью ультразвука. На рисунке 21 представлена схема ультразвукового твердомера. Он со­стоит из преобразователя 1, волновода 2 с индикатором 3, на конце которого имеется алмазный наконечник, регистрирующего устройства 4 и генератора 5. Наконеч­ник вдавливается с незначительной фиксированной на­грузкой. Он соединен со стержнем, колеблющимся с резо­нансной частотой. Эта частота изменяется в зависимости от размера отпечатка алмазного наконечника и характери­зует твердость материала. Размер отпечатка незначитель­ный, его не следует определять под микроскопом, как в приборе Виккерса и при измерении микротвердости, незначительно повреждается поверхность, процесс изме­рения твердости может быть автоматизирован.

Рисунок 21. Схема устройства ультразвукового твердомера

Выводы по лекции

Механические свойства определяют способность металлов сопротивляться воздействию внешних сил (нагрузок). Они зависят от химического состава металлов, их структуры, способа технологической обработки и других факторов. Зная механические свойства, можно судить о поведении металла при обработке и в процессе работы конструкций и механизмов.

Дано определение таким понятиям, как напряжение и деформация, упругая и пластическая деформации, механизм пластической деформации, влияние пластической деформации на свойства металла. Показана методика статических испытаний на растяжение, определены основные виды напряжений. Рассмотрены основные способы испытания на твер­дость

Вопросы для самопроверки

  1. Какие виды напряжений существуют?

  2. Что такое упругая и пластическая деформации?

  3. Как разрушается материал?

  4. В чем заключаются методы Бринелля, Роквелла и Виккерса измерения твердости ?