- •Київ нухт 2016
- •Вступ Становлення електротехніки.
- •Сьогодення виробництва електричної енергії в Україні
- •Структура та сучасний стан енергетики України.
- •1. Властивості електричного, магнітного й електромагнітного полів
- •Загальні поняття та визначення теорії електрики
- •1.2. Загальні поняття та визначення теорії магнетизму
- •1.3. Питання для самоперевірки та модульного контролю за розділом
- •2. Електричні кола змінного струму
- •2.1. Загальні поняття та визначення теорії електричних кіл
- •2.2. Змінний синусоїдний струм
- •2.2.1. Отримання синусоїдного струму та миттєві значення електричних величин.
- •2.2.2. Фази змінної величини і фазовий кут. Векторні діаграми.
- •2.2.3. Використання комплексних чисел для аналізу кіл синусоїдного струму.
- •2.2.4. Діюче і середнє значення синусоїдних величин.
- •2.3. Лінійні електричні кола синусоїдного струму
- •2.3.1. Особливості кіл змінного синусоїдного струму.
- •2.3.2. Основні закони кіл синусоїдного струму.
- •2.3.3. Нерозгалужені електричні кола змінного струму (лекція 4).
- •2.3.3.1. Коло синусоїдного струму з резистором.
- •2.3.3.2. Коло синусоїдного струму з ємністю.
- •2.3.3.3. Коло синусоїдного струму з індуктивністю.
- •2.3.3.4. Послідовне з’єднання елементів.
- •2.3.4. Розгалужені електричні кола змінного струму (лекція 5).
- •2.3.4.1. Паралельне з’єднання елементів.
- •2.3.4.2 Загальний випадок паралельного кола.
- •2.3.5. Коло змінного струму із мішаним з’єднанням споживачів.
- •2.3.5.1. Приклад чисельного розрахунку мішаного з’єднання споживачів класичним способом.
- •2.3.5.2. Приклад чисельного розрахунку мішаного з’єднання споживачів символічним способом.
- •2.4. Питання для самоперевірки та модульного контролю за розділом
- •Тема 3. Електричні кола трифазного змінного струму.
- •3.1. Трифазні електричні кола
- •3.2. З’єднання у зірку
- •3.2.1. Зірка споживача з рівнорозподіленим навантаженням фаз.
- •3.2.2. Зірка споживача з нерівнорозподіленим навантаженням фаз.
- •3.3. З’єднання у трикутник
- •3.4. Потужність трифазної системи
- •3.5. Приклади чисельного розрахунку трифазних з’єднань
- •3.5.1. Приклад чисельного розрахунку з’єднання у зірку
- •2.5.2. Приклад чисельного розрахунку з’єднання у трикутник
- •2.5.3. Аналіз трифазного з’єднання з урахуванням опорів лінійних проводів
- •3.6. Вимірювання електричних величин трифазної системи
- •3.7. Визначення порядку черги фаз трифазної системи
- •3.8. Питання для самоперевірки за розділом “Трифазні електричні кола”
- •Тема 4. Магнітні кола
- •4.1. Властивості феромагнітних матеріалів
- •4.2. Магнітні кола й їх класифікація
- •4.3. Основні закони магнітних кіл
- •4.4. Розрахунок магнітних кіл з постійною магніторушійною силою
- •4.4.1 Приклад чисельного розрахунку прямої задачі.
- •4.4.2. Приклад чисельного розрахунку зворотної задачі.
- •4.5 Особливості магнітних кіл зі змінною магніторушійною силою
- •4.6. Резонансні явища в магнітних колах
- •4 .7. Електричні дроселі
- •4.8. Питання для самоперевірки за розділом „Магнітні кола”
- •Тема 5. Трансформатори
- •5.1. Будова трансформатора
- •5.1.1. Магнітна система трансформатора.
- •5.1.2. Електрична система трансформатора
- •5.2. Принцип дії та основні режими роботи трансформатора
- •5.2.1 Принцип дії трансформатора.
- •5.2.2. Режим холостого ходу.
- •5.2.3. Робота трансформатора під навантаженням.
- •5.3. Коефіцієнт корисної дії та випробовування трансформатора
- •5.3.1. Коефіцієнт корисної дії.
- •5.3.2 Дослід холостого ходу.
- •Напругу первинної u1н і вторинної u20 обмоток.
- •Струм холостого ходу i10, він же струм намагнічування.
- •Потужність холостого ходу p0.
- •5.3.3. Дослід короткого замикання.
- •1. Напругу короткого замикання Uкз.
- •3. Потужність короткого замикання Ркз.
- •3.4. Трифазні силові трансформатори
- •5.4.1. Особливості трифазних трансформаторів.
- •Співвідношення значень цих коефіцієнтів залежить від схеми з’єднання обмоток апарата:
- •5.4.2. Розмітка затискачів і схеми увімкнення трифазного трансформатора.
- •Розглянемо тепер випадок, коли позначення затискачів обмоток трансформатора відсутні.
- •5.4.3. Охолодження трансформаторів.
- •5.4.4. Паралельна робота силових трансформаторів.
- •5.4.5. Приклад розрахунку трифазного трансформатора.
- •Зверніть увагу, активний, реактивний та повний опори обмоток трансформатора в режимі короткого замикання можуть бути визначені так, Ом:
- •5.5. Автотрансформатори
- •5 .6. Трансформатори для електрозварювання
- •5.7. Вимірювальні трансформатори
- •5.7.1. Трансформатори струму.
- •1). Номінальна напруга – лінійна напруга системи, де втс може працювати і на яку розрахована його ізоляція;
- •2). Номінальний струм первинної обмотки – струм i1н, при тривалій дії якого обмотка не перегрівається вище припустимої температури;
- •5.7.2. Трансформатори напруги.
- •5.8. Питання для самоперевірки за розділом “Трансформатори”
4.6. Резонансні явища в магнітних колах
На відміну від кіл синусоїдного струму з постійними L і C елементами та f, де резонансні явища (струму або напруги) можуть бути досягнути шляхом зміни величини одного з елементів, у колах, в які ввімкнені лінійна ємність і котушка з феромагнітним осердям, явище резонансу додатково може бути досягнуто шляхом зміни або струму, або напруги кола. Наприклад, ферорезонанс напруги у колі (рис. 4.9, а) з послідовним з’єднанням лінійного конденсатора (С = const) і котушки з феромагнітним осердям (L const) має місце при перетинанні вольт-амперних характеристик (ВАХ) цих елементів – коли UC = UL. Для пояснення процесів, які відбуваються у такому колі скористуємося рис. 4.9, б, де наведені ВАХ елементів UC = f(), UL = f() та всього кола U = f().
При мінімальному збільшені напруги джерела понад U1, струм кола стрибкоподібно змінюється від 1 до 2. Одночасно з цим стрибкоподібно змінюється напруга на ємнісному елементі – від UC1 до UC2, і несуттєво, від UL1 до UL2, на індуктивному. Подальше збільшення напруги джерела U > U1 (після стрибка струму) супроводжується пропорційним збільшенням UC та вкрай незначним збільшенням UL. Якщо ідеалізувати коло і вважати, що втрати енергії у його складових відсутні, то при зменшенні напруги джерела розглянуті процеси будуть відбуватися у зворотному напрямку. Таким чином, при значних коливаннях напруги живлення кола спад напруги на котушці із насиченим магнітопроводом залишається практично сталою. Ця обставина використовується в ферорезонансних стабілізаторах, де напруга на затискачах котушки є стабілізованою вихідною напругою uвих пристрою. Явище, коли несуттєва зміна активного опору або напруги живлення кола супроводжується стрибкоподібною зміною струму, отримало назву тригерного ефекту. Воно широко використовується у ферорезонансних реле захисту електрообладнання від перенапруги.
4 .7. Електричні дроселі
Силовий електричний дросель являє собою котушку з феромагнітним осердям, яка має нелінійну індуктивність. Шляхом послідовного вмикання (рис. 4.10) з навантаженням Zн, їх використовують для регулювання струму або напруги у колах змінного струму.
Н
а
відміну від з регулювальних реостатів,
які мають великий активний опір і,
практично, не мають реактивного опору,
дроселі, навпаки, мають великий реактивний
опір і відносно малий активний. Оскільки
втрати енергії у пристрої визначаються
величиною його активного опору (закон
Джоуля-Ленца), то при застосуванні
дроселів пристрої конструктивно значно
менші ніж при застосуванні реостатів.
Рис.
4.11. Електричні дроселі: а – із замкненим
осердям; б – з регульованим повітряним
зазором; в – з підмагнічуванням
Дроселі
з замкнутим стальним (у більшості
випадків) осердям мають практично сталий
повний опір. Їх використовують, наприклад,
у електроосвітлювальних установках
для зменшення напруги живлення
газорозрядних ламп.
В
дроселях, де осердя має повітряний
зазор,
магнітне коло складається з двох ділянок,
які суттєво відрізняються між собою за
величиною опорів – стального осердя і
повітряного зазору. Магнітний опір і,
відповідно, індуктивність котушки
дроселя такої конструкції в основному
визначаються товщиною повітряного
зазору. Якісний вигляд залежності
повного електричного опору Zдр
пристрою від товщини
повітряного зазору показаний на рис.
4.12, а.
При незмінній напрузі джерела зі збільшенням товщини повітряного зазору дроселя струм у колі і напруга на навантаженні збільшуються, а напруга Uдр на котушці дроселя зменшується. Залежність Uдр() називають ВАХ дроселя. Як випливає із рис. 4.12, б збільшення товщини повітряного зазору = 0, 1 < 2 сприяє спрямленню ВАХ пристрою. Дроселі з регульованим повітряним зазором використовують для зміни струму навантаження, наприклад, струму зварювання у зварювальних апаратах. Основним недоліком цих пристроїв є складність будови вузла регулювання товщини повітряного зазору.
Дросель насичення являє собою котушку із замкненим осердям, виготовленим з магнітом’якої сталі. Ступінь насичення осердя і, отже, індуктивність котушки пристрою, тут регулюють величиною постійного струму у додатковій обмотці (обмотці керування) за допомогою реостату Rрег. Зі збільшенням струму керування к повний опір Zдр пристрою зменшується, а зі зменшенням, відповідно, збільшується (рис. 4. 13). Дроселі такої конструкції використовують у ферорезонансних стабілізаторах напруги, безконтактних реле і т. ін.
