- •Оглавление
- •Введение
- •Определения и сокращения
- •1. Общие принципы организации защиты информации на пк
- •1.1. Группы информационных угроз
- •Физическое хищение компьютерных носителей информации
- •Побочные электромагнитные излучения
- •Несанкционированные действия с информацией на пк
- •1.2. Методы защиты
- •2. Аутентификация пользователя при входе в систему
- •2.1. Ввод пароля с клавиатуры
- •2.2. Использование электронных ключей
- •2.3. Виды электронных ключей
- •2.3.1. Дискета
- •2.3.2. Магнитная карта
- •2.3.4. Карты Proximity
- •2.3.5. Rfid-метки
- •Классификация rfid-меток
- •По рабочей частоте
- •По источнику питания
- •Пассивные
- •Активные
- •Полупассивные
- •По типу используемой памяти
- •Применение rfid-меток Транспорт
- •Документы, удостоверяющие личность
- •Системы контроля и управления доступом (скуд)
- •2.3.7. Смарт-карты
- •Размеры sim карт
- •2.3.8. Токен
- •Идентификаторы Рутокен
- •Электронные ключи eToken
- •2.4. Биометрические методы аутентификации
- •Принцип работы биометрических систем
- •Классификация биометрических систем
- •Сканеры отпечатков пальцев
- •Сканеры отпечатка ладони
- •Сканирование черт лица
- •Аутентификация по голосу
- •Сканирование сетчатки глаза
- •Верификация подписи
- •Инновационные методы биометрической идентификации
- •2.5. Дополнительные рекомендации при аутентификации
- •3. Модели доступа
- •Виды прав доступа
- •3.1. Дискреционное управление доступом
- •3.2. Управление доступом на основе ролей
- •Возможности и применение
- •3.3. Мандатное управление доступом
- •Особенности применения модели
- •3.3.1. Пользователи и группы
- •4. Криптографическая защита информации
- •4.1. Классификация систем шифрования
- •Потоковые шифры
- •Блочные шифры
- •4.1.1. Симметричные (одно ключевые) криптоалгоритмах
- •4.1.2. Асимметричные (двух ключевые) криптосистемы
- •4.1.3. Комбинированный метод
- •Комбинированный метод (пример):
- •4.2. Технологии цифровых подписей
- •4.3. Распространение открытых ключей
- •4.3.1. Технология pgp
- •4.3.2. Технология pki (иок)
- •Удостоверяющий центр
- •Регистрационный центр
- •Репозиторий
- •Список отозванных сертификатов (crl)
- •Архив сертификатов
- •Конечные пользователи
- •Сертификат открытого ключа
- •Корневой сертификат
- •4.4. Хеширование паролей
- •4.5. Криптоанализ
- •4.5.1. Виды атак на криптосистемы
- •4.5.2. Надежность криптографических методов
- •4.6. Регулирование использования средств криптозащиты информации
- •Виды атак на криптосистемы?
- •5. Стеганография
- •5.1. Понятие стеганографии
- •5.2. Методы сокрытия информации в компьютерной стеганографии
- •5.2.2. Классификация методов стеганографии
- •Использование свойств формата файла-контейнера:
- •5.2.3. Использование свойств формата файла-контейнера
- •5.2.3.1. Сокрытие в межформатных пространствах файла-контейнера
- •5.2.3.2. Сокрытие-маскировка
- •5.2.4. Использование свойств атрибутов и данных файла-контейнера
- •5.2.4.1. Сокрытие с использованием атрибутов файла-контейнера
- •5.2.4.2. Сокрытие с использованием свойств данных файла-контейнера
- •5.2.5. Использование возможностей файловой системы
- •5.2.5.1. Использование штатных возможностей файловой системы
- •5.2.5.2. Использование скрытых возможностей файловой системы
- •Скрытие информации с использованием особенностей файловой системы fat32
- •Скрытие информации с использованием особенностей файловой системы ntfs
- •Особенности файловой системы ntfs в операционной системе Windows 7
- •5.3. Компьютерные вирусы и стеганография
- •Классификация методов стеганографии?
- •6. Гарантированное уничтожение информации
- •7. Методы воздействия на средства защиты информации
- •Литература
- •190000, Санкт-Петербург, б. Морская ул., 67
3. Модели доступа
Механизмы управления доступом являются основой защиты ресурсов информационной системы, обеспечивая решение задачи разграничения доступа субъектов к защищаемым информационным и техническим ресурсам объектам. В качестве субъектов в простейшем случае понимается пользователь. На практике наличие механизмов управления доступом необходимо, даже если в системе может находиться только один прикладной пользователь. Это вызвано тем, что, как правило, в системе должен быть также заведен пользователь с правами администратора, который настраивает параметры системы защиты и права доступа к ресурсам защищаемого объекта. При этом у администратора принципиально иные права, чем у прикладного пользователя.
Давайте рассмотрим наиболее популярные, практически реализованные в информационных системах модели управления доступом [11, 12]:
Рис. 19. Модели управления доступом
Виды прав доступа
Права доступа определяются по отношению к трём типам действий: чтение (r), запись (w) и исполнение (x). Эти права доступа могут быть предоставлены трём классам пользователей:
владельцу файла (пользователю);
группе, к которой принадлежит владелец;
всем остальным пользователям, не входящим в эту группу.
Право на чтение даёт пользователю возможность читать содержимое файла или, если такой доступ разрешён к каталогам, просматривать содержимое каталога. Право на запись даёт пользователю возможность записывать или изменять файл, а право на запись для каталога – возможность создавать новые файлы или удалять файлы из этого каталога. Наконец, право на исполнение позволяет пользователю запускать файл как программу или сценарий командной оболочки (разумеется, это действие имеет смысл лишь в том случае, если файл является программой или сценарием). Для каталогов право на исполнение имеет особый смысл – оно позволяет сделать данный каталог текущим, т. е. перейти в него.
3.1. Дискреционное управление доступом
Дискреционное (Избирательное) управление доступом (англ. Discretionary access control, DAC) – управление доступом субъектов к объектам на основе списков управления доступом или матрицы доступа.
Схема дискреционной модели управления доступом:
Субъект доступа «Пользователь № 1» имеет право доступа только к объекту доступа № 3, поэтому его запрос к объекту доступа № 2 отклоняется.
Субъект «Пользователь № 2» имеет право доступа как к объекту доступа № 1, так и к объекту доступа № 2, поэтому его запросы к данным объектам не отклоняются.
Для каждой пары (субъект – объект) должно быть задано явное и недвусмысленное перечисление допустимых типов доступа (читать, писать и т. д.), то есть тех типов доступа, которые являются санкционированными для данного субъекта (индивида или группы индивидов) к данному ресурсу (объекту).
Рассмотрим пример настройки матрицы доступа при организации дискреционной модели управления к объектам файловой системы.
-
Об. А
Об. Б
Об. В
Об. Г
Об. Д
Суб. 1
r w x
r w x
r w x
r w x
r w x
Суб. 2
r w x
r w x
r w x
r w x
r w x
Суб. 3
r w x
r w x
r w x
r w x
r w x
Суб. 4
r w x
r w x
r w x
r w x
r w x
Суб. 5
r w x
r w x
r w x
r w x
r w x
Где: Суб. – субъект, пользователь;
Об. – объект, защищаемый ресурс;
r w x – права доступа субъекта к объекту (read (r) читать, write (w) писать, execute (x) исполнять).
Рис. 20. Матрица доступа
Возможны несколько подходов к построению дискреционного управления доступом:
Каждый объект системы имеет привязанного к нему субъекта, называемого владельцем. Именно владелец устанавливает права доступа к объекту.
Система имеет одного выделенного субъекта – администратора, который имеет право устанавливать права владения для всех остальных субъектов системы.
Субъект с определенным правом доступа может передать это право любому другому субъекту.
Возможны и смешанные варианты построения, когда одновременно в системе присутствуют как владельцы, устанавливающие права доступа к своим объектам, так и администратор, имеющий возможность изменения прав для любого объекта и (или) изменения его владельца. Именно такой смешанный вариант реализован в большинстве операционных систем, например, в классических UNIX-системах или в системах Windows семейства NT (Windows 2000/XP/Vista/7 и т.д.).
Дискреционное управление доступом является основной реализацией разграничительной политики доступа к ресурсам при обработке конфиденциальных сведений, согласно требованиям к системе защиты информации.
