Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
112.2 Кб
Скачать

ГУО "Гимназия №1 г. Витебска"

Звезды второго поколения :

рассеянные скопления и звездные ассоциации

Ученик 11"В" класса

Ковалихин Андрей Васильевич

Витебск 2017

Содержание:

1. Введение

2. Звезды второго поколения

3. Значение звездных скоплений для астрономии

4. Рассеянные скопление

4. 1. Образование

4. 2. Судьба

5. Звездные ассоциации

6. Заключение

7. Список литературы

  1. Введение

Рисунки звезд, которые видели древние жители Земли складывались в различные причудливые картины, которым присваивались звучные эпические имена. Туманность Андромеды, созвездие Кассиопеи, Большая Медведица и Гидра – это только малая часть названий, позволяющих судить о том, какие ассоциации вызывали сверкающие на темном полотне небосклона далекие удивительные светила. Считалось, что судьбы людей неразрывно связаны с взаиморасположением звезд, которые способны принести рожденному под ними как богатство, счастье и удачу, так и горечь, беды и разочарования. С развитием цивилизации мистико-поэтические представления о строении небесного свода существенно видоизменились и систематизировались, приобретя гораздо более рациональные очертания, но исторические звучные названия сохранились. Оказалось, что кажущиеся близкорасположенными звезды могут в реальности находиться далеко друг от друга и наоборот. Поэтому возникла необходимость создать звездную иерархию, соответствующую современным представлениям о мироздании. Так, в астрономической классификации появился термин «звездные скопления», объединяющий группу звезд, движущихся в своей галактике как одно целое.

2 .Звезды второго поколения

В отдельных галактиках, включая и нашу собственную, газовые облака по какой-то причине могли быть неодинаковы в размерах. Крупные сгущались быстрее, так как они обладали более сильным гравитационным полем. Из этих более крупных облаков и выходили массивные звезды, недолговечные и взрывающиеся как сверхновые. Сверхновые в астрономическом масштабе времени возникали почти мгновенно и извергали материю в космос уже тогда, когда многие газовые облака еще оставались облаками и только собирались сгуститься в звезды. Материя раскаленной сверхновой, смешиваясь с газовыми облаками, подогревала их. Чем горячее становилось облако, тем быстрее было хаотическое движение атомов и, следовательно, тем сильнее их стремление вырваться и рассеяться. Остывающее облако, только-только начавшее сгущаться под влиянием собственного тяготения, нагреваемое таким образом, начинало вновь расширяться. Его гравитационное поле росло менее интенсивно и время, когда могло начаться сгущение, могло отсрочиться надолго, даже навсегда. Эти ранние сверхновые выполняли две функции. Во-первых, они поддерживали существование газовых облаков и предохраняли их от конденсации, так что даже теперь во многих галактиках встречаются такие облака. Во-вторых, они рассеивали в газовых облаках тяжелые ядра, т. е. ядра тяжелее, чем гелий. Эти тяжелые ядра могли соединяться с водородом и друг с другом, образуя пылевые частицы, так что газовые облака теперь уже состояли из газа и пыли. Так, в некоторых галактиках, в теперешнем их виде, в форме облаков газа пребывает не более 2 % общей массы; в других, где «поработали» сверхновые, на долю газопылевых облаков приходится до 25 %. В галактиках, богатых межзвездными облаками, сами облака распределены неравномерно. К таким галактикам обычно относятся спиральные, в ветвях которых и сосредоточены облака, в основном газопылевые. Наше Солнце, к слову сказать, находится в одной из спиральных ветвей Галактики; по некоторым оценкам, около половины массы этих спиральных ветвей пребывает в виде межзвездных газопылевых облаков.

Окраина Галактики, где мы живем, настолько «запылена», что мы испытываем серьезные трудности, желая осмотреть строение Галактики. В плоскости Млечного Пути, где в основном сосредоточились облака, кроме ближайших звезд, мы ничего не видим —# все остальное закрыто облаками! Мы не можем видеть центр Галактики посредством обычного света и должны довольствоваться любой ее частью, но только не ядром!

Только благодаря тому, что мы научились владеть радиоволнами, легко минующими эти облака, да еще потому, что центр Галактики — область высокой активности, излучающая радиоволны, мы хоть что-то знаем об этом районе.

Межзвездные облака, существующие ныне в Галактике, в течение 14 млрд. лет подвергались воздействию взрывов миллионов сверхновых, поэтому они изрядно перемешаны и обогащены привнесенным в них материалом. Около 1 % содержащихся в этих облаках атомов (или 3 % массы) составляют тяжелые атомы, кроме гелия, существующие только как часть тяжелых атомных выбросов, запущенных в межзвездное пространство чудовищной силой извержения сверхновой.

Время от времени одно из этих обогащенных тяжелыми атомами газопылевых облаков — пусть в нашей или в другой галактике — начинает претерпевать сжатие и образует новую звезду, или несколько звезд, или даже целое скопление. Звезды, образующиеся из межзвездных облаков с ощутимым содержанием тяжелых атомов, — это «звезды второго поколения»; их структуры в небольшой, но измеримой степени построены из материала, который возник внутри более ранних звезд, ныне мертвых и исчезнувших или по крайней мере не существующих больше в главной последовательности.

Наше Солнце — звезда второго поколения, образовавшаяся 4,6 млрд. лет назад; к тому времени Галактика существовала уже около 10 млрд. лет. Солнце образовалось из облака, которое на протяжении всех этих миллиардов лет подвергалось насыщению осколками взрывов сверхновых и поэтому включало значительное количество тяжелых ядер уже с самого рождения, хотя по своей структуре оно было тогда почти полностью водородно-гелиевым.

Если звезда, подобная Солнцу, могла образоваться спустя 10 млрд. лет после Большого взрыва, значит, есть звезды, которые могли образоваться и позднее. (И это несомненно, сегодня, сейчас на главной последовательности есть звезды, которые по массе могут там оставаться лишь несколько миллионов лет; отсюда вывод: они должны были возникнуть не ранее нескольких миллионов лет назад). Короче говоря, должны существовать звезды, которые образуются и в настоящий момент в нашей Галактике, и даже на окраине нашей Галактики. Мы, пожалуй, можем когда-нибудь увидеть свидетельства их образования.

К примеру, туманность Ориона: это газопылевое облако общей массой, вероятно, в 300 раз больше массы Солнца имеет звезды, иначе бы облако не светилось. Звезды спрятаны в облаках окружающих их пыли и газа точно так же, как нить накаливания скрыта стеклом матовой лампы: нить заставляет светиться матовое стекло, но она сама в деталях остается невидимой.

Есть свидетельства тому, что звезды эти очень массивны и потому должны быть совсем молодыми. Несомненно, они произошли из этого облака и должны быть еще другие, образующиеся из него сейчас.

Когда происходит образование такой звезды, части облака сгущаются, уплотняются и мутнеют. Свет от звезд внутри облака через такие уплотненные зоны проходит с трудом. Очевидно, между нами и внутренними звездами туманности Ориона имеются части туманности в виде маленьких, темных, более или менее округлых зон. На такие округлые темные места в туманности Ориона в 1947 г. указал голландско-американский астроном Барт Бок (1907–1983). Они стали известны как «глобулы Бока», и вполне возможно (хотя и не наверное), они представляют собой звезды в процессе образования.

Можно спросить: что заставляет межзвездные облака сгущаться в звезды, если они просуществовали как облака миллиарды лет, не имея ни малейшей склонности к сгущению? Вероятно, к более плотному состоянию частиц пыли внутри облаков приводят их хаотические движения, которые усиливают гравитационное поле, что и дает начало процессу; откровенно говоря, это очень маловероятно, а если и вероятно, то несколько миллиардов лет назад.

В сущности, хаотическое движение могло бы постепенно рассеять облако и разредить его до почти вакуумного состояния межзвездного пространства. Ведь межзвездное пространство в конечном счете очень разреженная система газа и мельчайшей пыли. Она может представлять собой отчасти материал, никогда не использованный при образовании звезд и межзвездных облаков, отчасти материал, который из самих этих облаков был рассеян.

Существование такого межзвездного вещества впервые было доказано немецким астрономом Иоганном Хартманом (1865–1936) в 1904 г. Изучая спектр отдельной звезды, он обнаружил, что линии ее спектра имели смещение (этого и следовало ожидать, поскольку звезда удалялась). Хартмана поразило то, что некоторые линии, именно линии, представлявшие элемент кальций, не смещались. По крайней мере, кальций оставался в покое и поэтому никак не мог принадлежать звезде. Так как между нами и звездой не было ничего, кроме «пустого» пространства, кальций следовало отнести именно к этому пространству, которое в общем и целом оказывалось не таким уж пустым.

Кальций присутствовал в пространстве в чрезвычайно разреженном состоянии, но по мере того, как свет проделывал свой миллиарднолетний путь от звезды к нам, он время от времени сталкивался с одним из атомов кальция, при этом всякий раз поглощался фотон света. В итоге исчезновение множества фотонов отмечается теперь заметной темной линией.

В 1930 г. швейцарско-американский астроном Роберт Трамплер (1866–1956) показал, что в космосе присутствует достаточно межзвездной пыли (какой бы редкой она ни была!), чтобы затуманить отдаленные объекты.

Итак, мы можем заключить, что ныне существующие и миллиарды лет сохраняющие свою природу межзвездные газовые облака (например, облако, давшее начало нашему Солнцу, или облака, существующие сегодня) пребывают в состоянии хрупкого равновесия. Они недостаточно плотны или холодны, чтобы начать процесс сгущения, и недостаточно разреженны или горячи, чтобы раствориться в межзвездном газе. Чтобы из такого газового облака зародилась звезда, должно произойти, хоть ненадолго, нарушение упомянутого равновесия. Что же может послужить толчком?

Астрономы выдвинули несколько возможностей. В туманности Ориона, например, живущие там ныне крупные молодые горячие звезды посылают мощный звездный ветер, в сравнении с которым наш солнечный ветер — легкий ветерок. Устремляясь сквозь окрестную туманность, они гонят перед собой пыль и газ, сжимая их до плотности гораздо большей чем существует вокруг. Это, в свою очередь, усиливает гравитационное поле в этой части облака и вызывает процесс конденсации, который еще больше сжимает пыль и газ, опять же усиливая гравитацию, и т. д. Образуется глобула Бока и в конце концов звезда.

Но как же возникли те горячие молодые звезды? В частности, как возникла первая звезда в туманности Ориона, до того как там возникли звездные ветры, проходящие сквозь туманность и вызывающие процесс сжатия?

Тут может быть несколько возможностей.

Межзвездные облака, как и сами звезды, пребывают в постоянном движении вокруг центральных районов галактики, содержащих основную ее массу. Межзвездное облако может когда-нибудь оказаться рядом с горячим огромным солнцем, и солнечный ветер даст первую волну сжатия — толчок к образованию звезды.

Или, например, два межзвездных облака могут столкнуться и слегка надавить друг на друга. Они могут даже частично слиться, образовав в том месте, где произошло их наложение, зону повышенной плотности. Гравитационное поле, где облака легли «внахлест», будет усилено, и начнется сгущение.

Может статься, что межзвездное облако будет проходить очень далеко от ближайших звезд и его температура несколько упадет. Атомы и частицы, составляющие его, замедлят свое движение и потянутся друг к другу; облако станет плотнее, и начнется процесс сгущения.

Однако эти возможности являются настолько слабыми «возбудителями», что при таких условиях вообще маловероятно образование звезды. Нет ли тут другого, более мощного «запала»?

Есть! Если сверхновая взорвется в относительной близости от нашего облака, то волна вещества, вырвавшегося в результате взрыва, врежется в облако наподобие ударной волны.

Это будет грандиозным событием, превосходящим все, что может произойти вблизи обычной звезды или при столкновении двух облаков. Следствием такого взрыва будет мощнейшее сжатие облака и начало процесса звездообразования.

Конечно, как было уже сказано в этой главе, взрыв сверхновой может вызвать нагрев межзвездного облака и сделать невозможным его сгущение, но многое зависит от того, насколько близка была сверхновая, насколько плотным было облако с самого начала и т. д. В одних условиях преобладает эффект нагревания, в других — сжатия; в последнем случае может образоваться звезда.

Итак, можем ли мы полагать (очевидных доказательств у нас нет, есть только возможность полагать), что примерно 4,6 млрд. лет назад на расстоянии всего нескольких световых лет от межзвездного облака, остававшегося в равновесии 10 млрд. лет, взорвалась сверхновая?

И вызвал ли этот взрыв достаточное сжатие, чтобы начался процесс, который привел в конце концов к возникновению нашего Солнца?

Если это так, мы должны испытывать к сверхновым чувство тройной благодарности.

Во-первых, сверхновые посредством ионов заполнили космос тяжелыми элементами, которым иначе никак бы не возникнуть, — элементами, необходимейшими для нашего мира и для нас самих, без которых не было бы и нас (как не было бы, вероятно, и никакой жизни во Вселенной!).

Во-вторых, энергия взрыва сверхновой удержала многие межзвездные облака (включая и то, что дало жизнь нашему Солнцу) от преждевременного сгущения (до того, как они стали достаточно насыщены тяжелыми элементами). В-третьих, взрыв близлежащей сверхновой явился тем самым толчком, который заставил облако, обладавшее теперь изрядной долей тяжелых элементов, сгуститься в Солнце.