- •Введение
- •Принятые сокращения.
- •Термины и определения
- •1. Геосферы Земли и их характеристики
- •1.1. Общие представления о геосферах Земли
- •1.2.Природные ресурсы.
- •1.3. Управление качеством окружающей среды
- •1 − Точка минимума; 2 ─ точка оптимума; 3 ─ точка максимума.
- •1.4. Особенности функционирования промышленных предприятий и транспортных средств
- •Вопросы для самоконтроля по теме №1.
- •2. Загрязнение и защита атмосферы
- •2.1 Особенности загрязнения атмосферы.
- •2.2 Качество атмосферы.
- •2.3 Основные химические примеси, загрязняющие атмосферу
- •2.4 Основные источники загрязнения атмосферы
- •2.5 Основные последствия загрязнения атмосферы
- •2.6 Методы и средства защиты атмосферы от химических примесей
- •2.6.1 Замена менее экологичных видов топлива более экологически чистыми в различных отраслях.
- •2.6.2 Сжигание топлива по специальной технологии.
- •2.6.3 Внедрение замкнутых производственных процессов
- •2.7 Методы очистки вредных выбросов.
- •2.8 Аппараты для очистки выбросов от пыли:
- •2.9 Аппараты для очистки выбросов от жидких взвешенных частиц (туманоуловители):
- •2.10 Методы и аппараты очистки вредных выбросов от газообразных примесей.
- •Вопросы для самоконтроля по теме №2.
- •3. Загрязнение и защита гидросферы
- •3.1 Свойства воды и глобальный водообмен.
- •3.2 Загрязнение гидросферы
- •3.3 Истощение материковых вод.
- •3.4 Использование пресных вод
- •3.4.1 Качество воды
- •3.4 Обеспечение качества питьевой воды
- •3.4.3 Основные направления в решении проблемы нехватки пресной воды
- •3.5. Методы и средства защиты водных объектов от загрязнения сточными водами
- •3.5.1. Механическая очистка сточных вод.
- •Физико-химические методы очистки сточных вод.
- •Химические методы очистки сточных вод.
- •Биохимические методы очистки сточных вод.
- •Термические методы очистки сточных вод.
- •3.5.6. Глубокая очистка сточных вод.
- •3.5.7. Обеззараживание очищенных сточных вод.
- •Вопросы для самоконтроля по теме №3.
- •4. Загрязнение и защита литосферы
- •4.1 Литосфера и ее состав
- •4.2 Классификация (виды) ландшафтов, разрушение ландшафтов
- •4.3 Почва и ее строение. Загрязнение почв. Нормирование и контроль загрязнения почв
- •4.4 Утилизация и ликвидация отходов производства и потребления. Техногенные ресурсные циклы.
- •Вопросы для самоконтроля по теме №4.
- •5. Электромагнитные поля и защита от их воздействия на окружающую среду
- •5.1 Основные характеристики и классификация электромагнитных полей
- •5.2 Электромагнитные поля естественных и искусственных источников
- •5.3 Биологические эффекты электромагнитных воздействий
- •5.4 Гигиеническое нормирование параметров эмп для населения
- •5.5 Защитные мероприятия
- •Вопросы для самоконтроля по теме №5.
- •6. Защита от акустического загрязнения окружающей среды
- •6.1. Основные представления о звуке и шуме
- •6 .2. Нормирование шума в окружающей среде
- •6.3 Основные направления шумозащиты
- •Вопросы для самоконтроля по теме №6.
- •7. Экологические аспекты космической деятельности на современном этапе развития ракетно-космической техники
- •7.1 Ракетно-космические комплексы и технологические фазы осуществления космического полета
- •7.2. Техногенное воздействие на окружающую среду при эксплуатации ракетно-космической техники
- •7.3 Пути снижения техногенного воздействия ракетно-космической техники на окружающую среду
- •7.3. Технические пути решения проблемы загрязнения территорий
- •7.4. Техногенное воздействие на окружающую среду при эксплуатации наземных испытательных комплексов ракетно-космической техники
- •Вопросы для самоконтроля по теме №7.
- •8. Международное сотрудничество в сфере экологической безопасности.
2.6.2 Сжигание топлива по специальной технологии.
Традиционные энерготехнологические установки основаны на высокотемпературном (обычно около 1200°С) факельном сжигании топлив и являются одним из основных источников загрязнения атмосферы теплом и вредными веществами. Системам с простым факельным сжиганием топлива свойственны следующие недостатки:
- большие выбросы вредных продуктов (NOx , SO2 ,CO , бензопиренов);
- большие габариты систем, из-за низких коэффициентов теплоотдачи от горячих дымовых газов к теплообменным поверхностям и, как следствие, высокие капзатраты;
- дорогие конструкционные материалы (требования жаростойкости и долговечности);
- взрывопожароопасность и др.
Повысить эффективность горения и снизить загрязнение атмосферы позволяет применение сравнительно низкотемпературных (900-1000°С) топок с применением технологии «кипящего слоя» (псевдоожижения). Сжигание топлива можно осуществить также с предварительной его газификацией.
Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционноспособных). Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости (эффект псевдоожижения).
Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.
На практике, как правило, целесообразно сочетать несколько принципов при создании энергосберегающих и экологичных технологий. В качестве примера рассмотрим технологию, с использованием беспламенного каталитического горения, позволяющую избежать многих недостатков, свойственных системам с простым факельным сжиганием топлива
В основу рассматриваемой ниже технологии сжигания топлив в присутствии катализаторов заложено сочетание четырёх принципов:
применение катализаторов полного окисления веществ;
сжигание топлив в псевдоожиженном (кипящем) слое частиц катализатора;
сжигание смесей топлива и воздуха при соотношении, близком к стехиометрическому;
совмещение тепловыделения и теплоотвода в едином псевдоожиженном слое.
В генераторах тепла каталитических (ГТК) окисление топлива происходит на поверхности гранул специальных оксидных катализаторов, поддерживаемых в псевдоожиженном состоянии в потоке топлива, воздуха и продуктов горения. Отвод тепла из слоя производится через теплообменные поверхности, находящиеся в кипящем слое, путем прямого контакта катализатора с рабочим телом.
Каталитическое сжигание принципиально отличается от горения в традиционном понимании, так как топливо окисляется на поверхности твердых катализаторов без образования пламени вообще. Действие катализаторов в процессе полного окисления (или гетерогенного «горения») топливно-воздушных смесей схематически можно представить как химическое взаимодействие компонентов топлива с поверхностным кислородом катализатора с последующей регенерацией восстановленной поверхности катализатора кислородом газовой фазы. В зависимости от активности катализатора, которая определяется энергией связи поверхностного кислорода с активным компонентом катализатора, процесс полного окисления многих веществ может протекать при температурах 300-700°С. Таким образом, присутствие в реакционной системе катализатора снижает температуру сжигания органического топлива с 1000-1200°С до 300-700°С, сохраняя при этом высокие скорости горения и обеспечивая полное сгорание топливно-воздушных смесей даже без избытка воздуха.
В псевдоожиженном состоянии гранулы катализатора являются одновременно и твердым теплоносителем, обеспечивая высокие коэффициенты теплоотдачи к поверхности теплообменника. По сравнению с традиционными способами сжигания, наличие катализатора позволяет ослабить требования к термохимическим свойствам конструкционных материалов аппаратов, уменьшить потери теплоты через стенки аппаратов, облегчить запуск системы в работу и управление процессом, а также исключить протекание вторичных эндотермических реакций с образованием токсичных продуктов. Использование катализатора также позволяет снизить взрывоопасность устройств, так как топливо и воздух подаются в псевдоожиженный слой раздельно, и, кроме того, достичь высоких значений теплонапряженности объема топочного пространства и, следовательно, значительно снизить габариты, вес и металлоемкость конструкций.
Особенностью рассматриваемого ГТК является наличие в слое горизонтальной секционирующей решетки, которая тормозит свободную циркуляцию катализатора и разделяет псевдоожиженный слой на две зоны - нижнюю с температурой 600-750°С достаточной для полного окисления топлива, и верхнюю, температура которой может быть понижена до 200-З00°С за счет дополнительного отвода тепла (рис. 2.1). Это минимизирует потери теплоты с отходящими газами и позволяет проводить эффективно при контролируемой температуре различные технологические процессы, такие как, нагрев, сушку и термообработку различных порошковых материалов.
Очевидно, что для процессов сжигания в псевдоожиженном слое наиболее важным вопросом является выбор катализатора и его носителя. Специфика катализаторов, применяемых в ГТК, заключается в том, что при работе они подвергаются одновременному химическому, термическому и механическому воздействию. Применяемые в ГТК данного типа катализаторы полного окисления на алюмооксидных сферических носителях имеют, например, следующие характеристики: удельная поверхность 150-200 м2/г, средний радиус пор 40-50 Ǻ, прочность на раздавливание - 25 МПа.
Рис. 2.1. Схема ГТК и профиль температур по высоте слоя катализатора
Использование ГТК позволяет исключить образование продуктов недожога: сажи (дисперсный углерод C) и канцерогенных углеводородов (CnHn), и значительно снизить выбросы СО и NOX. Сравнение концентраций NOX при факельном сжигании и сжигании в псевдоожиженном слое катализатора показало, что сжигание топлив в ГТК приводит к резкому снижению образования как термических, так и топливных NOX.
