- •Закономерности воспроизводства клеток. Клеточный цикл и его генетический контроль. Митоз, апоптоз и некроз клеток.
- •Опорно-двигательная система клетки (цитоскелет); компонентный состав, особенности организации и выполняемые функции.
- •Анатомо-морфологические особенности высших растений как результат приспособления к жизни на суше.
- •Индивидуальное развитие покрытосеменных: микро- и макроспорогенез, формирование гамет, двойное оплодотворение, развитие семени и плода.
- •Общая характеристика грибов и грибоподобных организмов: строение таллома и клетки, химический состав клеточной стенки, запасные вещества, размножение и циклы развития. Классификация.
- •Надцарство Eukaryota Царство Fungi (Mycota, Mycetalia)
- •Подробнее про химический состав:
- •Отделы высших споровых растений и их жизненные циклы.
- •Молекулярная филогения. Принцип «нейтральной эволюции».
- •Формы полового размножения животных: преимущества и недостатки.
- •Паразитизм. Формы паразитизма. Адаптации животных к паразитическому образу жизни.
- •Структура вирусных частиц и основные функции компонентов вирионов (белков, нуклеиновых кислот и др.).
- •Особенности взаимодействия вирусов с клетками (бактериями, клетками человека, животных, растений).
- •Клеточные и организменные стадии вирусного патогенеза. Важнейшие вирусные инфекции человека.
- •Профилактика и борьба с вирусными инфекциями. Основные противовирусные препараты и вакцины.
- •Закономерности роста бактериальных культур при периодическом и непрерывном культивировании.
- •Строение, химический состав и функции основных структурных компонентов бактериальной клетки.
- •Метаболизм бактерий. Виды и основные назначения метаболических реакций.
- •Общая характеристика способов генетического обмена у бактерий.
- •Молекулярные механизмы мутационного процесса у про- и эукариот
- •Структура и функции гена. Особенности структурной организации генов у про- и эукариот. Теория гена
- •Классификация генов
- •Структурная организация генов у прокариот
- •Lac оперон
- •Триптофановый оперон
- •Структурная организация генов у эукариот
- •Молекулярные механизмы репликации и репарации у про- и эукариот.
- •Пространственная организация и функционирование фотосистем высших растений.
- •Сравнительный анализ биохимических превращений с3- и с4-путей фотосинтеза.
- •Макро- и микроэлементы минерального питания растений. Механизмы поступления ионов воды в растительную клетку.
- •Эндокринная система и её регуляторные функции.
- •Иммунитет к инфекционным заболеваниям и его формы. Методы создания искусственного иммунитета, его значение в борьбе с инфекционными заболеваниями.
- •Формы иммунного ответа организма млекопитающих на чужеродные антигены. Контактные и гуморальные взаимодействия клеток в ходе развития иммунных ответов на тимусзависимые антигены.
- •Химическая структура иммуноглобулинов и выполняемые ими функции. Генетические основы разнообразия иммуноглобулинов и их специфичности по отношению к чужеродным антигенам.
- •Условия и характер взаимодействия антиген-антитело. Основные группы методов исследования, базирующиеся на применении антител.
- •31. Химическая структура и физико-химические свойства аминокислот (стереохимия, амфотерность, реакционная способность). Классификация аминокислот.
- •33. Белки: распространение в биообъектах, разнообразие, биологическая роль, физико-химические свойства. Методы выделения и очистки, фракционирование белков.
- •34. Особенности биокаталитических процессов в живых организмах. Принципы структурной организации ферментов. Специфичность, стереоспецифичность. Фермент-субстратный комплекс. Энергия активации.
- •35. Механизм действия ферментов. Кинетика ферментативных реакций. Каталитические параметры. Зависимость скорости ферментативных реакций от концентрации субстрата, рН и температуры.
- •36. Классификация, шифр и номенклатура ферментов. Аллостерические ферменты. Изоферменты. Понятие о рибозимах.
- •Способы регуляции активности ферментов
- •1. Оксидоредукпшзы
- •6. Лигазы (синтетазы)
- •38. Первичная структура днк и рнк. Связь между нуклеотидами. Вторичная структура нуклеиновых кислот. Типы связей, особенности строения вторичной структуры днк и рнк.
- •40. Классификация, функции и биологическая роль углеводов. Структура и биологическая роль моно-, ди-, олиго- и полисахаридов.
- •41. Дихотомический путь расщепления глюкозы в аэробных и анаэробных условиях. Ключевые метаболиты, энергетическая характеристика и регуляция процесса.
- •42. Пентозофосфатный путь обмена углеводов, его биологическая роль.
- •43. Окислительное декарбоксилирование пировиноградной кислоты. Структурная организация и локализация мультиферментного пируватдегидрогеназного комплекса.
- •44. Амфиболический цикл трикарбоновых кислот. Локализация цикла, ключевые метаболиты и баланс энергии и цтк.
- •45. Глюконеогенез. Основные субстраты, используемые для синтеза глюкозы. Ферменты, обеспечивающие обходные реакции гликолиза. Регуляция гликолиза и глюконеогенеза. Цикл Кори.
- •Липиды: строение, физико-химические свойства, классификация, номенклатура, биологическая роль.
- •Классификация липидов
- •1. Омыляемые липиды.
- •2. Неомыляемые липиды.
- •Номенклатура липидов
- •Биологическая роль липидов заключается в следующем:
- •47. Гидролитическое расщепление ацилглицеринов и глицерофосфолипидов в жкт. Роль желчных кислот в процессе пищеварения липидов. Внутриклеточный липолиз.
- •49. Принципы планирования эксперимента с использованием лабораторных животных. Критерии подобия и аллометрия.
- •50. Биосинтез жирных кислот. Химизм и локализация этого процесса. Мультиферментный комплекс синтетазы жирных кислот.
- •Синтез насыщенных с16 кислот
- •Удлинение цепи жирных кислот
- •Синтез мононенасыщенных жирных кислот в эпр печени
- •Синтез триацилглицеринов
- •Биосинтез глицерофосфолипидов
- •Биосинтез стероидов
- •Биосинтез холестерина
- •51. Протеолитическое расщепление белков в процессе пищеварения. Активация пищеварительных протеолитических ферментов. Внутриклеточный протеолиз.
- •Гастриксин
- •I. Источники и пути использования аминокислот в клетках
- •1. Механизм реакции
- •2. Органоспецифичныеаминотрансферазы ант и act
- •3. Биологическое значение трансаминирования
- •1. Окислительное дезаминирование
- •2. Непрямое дезаминирование (трансдезаминирование)
- •3. Неокислительное дезамитровате
- •53. Пути образования, использования и обезвреживания аммиака в организме. Восстановительное аминирование, роль амидов дикарбоновых аминокислот в обмене веществ.
- •54. Типы азотистого обмена у животных. Орнитиновый цикл мочевинообразования
- •55. Энергия активации реакции (процесса), как термодинамическая характеристика. Экспериментальное определение величины энергии активации.
- •56. Ферментативный распад нуклеиновых кислот в жкт и клетке. Разнообразие и специфичность нуклеаз. Расщепление нуклеопротеинов в пищеварительном тракте
- •Классификация нуклеаз
- •Катаболизм пуриновых оснований (а и г)
- •Катаболизм пиримидиновых оснований (ц и т)
- •57. Репликация днк. Основные типы днк-полимераз, их структура, ферментативная активность, роль во внутриклеточных процессах. Контроль точности воспроизведения днк.
- •58. Репарация днк. Механизмы эксцизионной репарации днк (эксцизия нуклеотидов, оснований). Пострепликативная коррекция неспаренных оснований.
- •59.Транскрипция. Матричная рнк, её структура и функциональные участки, различия у про- и эукариот. Рнк-полимеразы про- и эукариот.
- •Структура мРнк у про- и эукариот
- •Прокариоты
- •Эукариоты
- •60. Классификация термодинамических систем; особенности живых организмов, как термодинамических систем.
- •61.Энтропия как функция состояния системы. Связь энтропии с термодинамической вероятностью состояния системы.
- •62. Биотехнология: сырьевая база, основные объекты и способы получения целевых продуктов.
- •Клеточная инженерия. Моноклональные тела и технология гибридом.
- •1. Иммунизация животных.
- •2. Подготовка миеломных клеток к слиянию.
- •3. Слияние.
- •4. Клонирование гибридомных клеток.
- •5. Выявление антител, синтезируемых гибридомными клетками.
- •64.Принципы катаболизма пуриновых оснований. Образование мочевой кислоты.
- •65.Принципы катаболизма пиримидиновых оснований.
- •66.Биосинтез пуриновых нуклеотидов: субстраты, ключевые ферменты, характер образования n-гликозидной связи.
- •Биосинтез пиримидиновых нуклеотидов: субстраты, ключевые ферменты, характер образования n-гликозидной связи.
- •68. Биоэлектрические явления: общая характеристика, классификация.
- •69.Окислительное фосфорилирование, его эффективность. Разобщающие агенты и ингибиторы окислительного фосфорилирования.
- •70.Синтез днк. Вилка репликации днк: ферменты и вспомогательные белки, их свойства и роль в репликации днк. Контроль инициации и терминации репликации днк.
- •71.Основные типы мгэ про- и эукариот: структура, гены и их продукты.
- •3.Транспозиция
- •72.Основные пути биотрансформации ксенобиотиков в первую фазу. Роль цитохрома p450 и b5.
- •1. Окисление:
- •2. Восстановление:
- •Реакции гидролиза
- •2 . Реакции восстановления.
- •3. Реакции окисления.
- •Инициация и терминация транскрипции у про- и эукариот, роль транскрипционных факторов в этих процессах.
- •75. Классификация термодинамических систем; особенности живых организмов, как термодинамических систем.
- •Сопряжение работы этц митохондрий с процессом синтеза атф. Механизм сопряжения.
- •Биохимическая характеристика этапов мочеобразования в нефроне: ультрафильтрация, реабсорбция, канальцевая секреция. Регуляция процессов реабсорбции и секреции.
- •79. Митоптоз. Роль активных форм кислорода в индукции митоптоза
- •Энзимопатии, их классификация, причины и механизмы их возникновения, примеры наиболее распространенных энзимопатий.
- •Эндокринопатии, причины и механизмы их возникновения, примеры наиболее распространенных эндокринопатий.
- •Особенности биотехнологического подхода в решении задач сельского хозяйства, медицины и других отраслей народного хозяйства.
- •83.Механизмы неопластической трансформации. Особенности метаболизма опухолевых клеток.
- •Амилоиды, их классификация, механизм развития. Свойства амилоидов. Амилоидная гипотеза развития болезни Альцгеймера.
- •Амилоидозы
- •Характеристика белков миофибрилл. Биохимические механизмы мышечного сокращения и расслабления. Особенности энергетического обмена в мышцах.
- •86.Токсическое и лекарственное поражение печени. Гипербилирубинемии, виды, механизмы развития, лабораторно-биохимические маркеры.
- •87. Объекты биотехнологии. Преимущества микроорганизмов перед другими объектами. Технология ферментационных процессов. Достижения биотехнологии.
- •Технология ферментационных процессов
- •Достижения биотехнологии
- •88 Связь между строением, физико-химическими свойствами и биологической активностью бав. Молекулярные мишени действия бав.
- •90. Биохимические механизмы обеспечения гемостаза. Характеристика свертывающей и противосвертывающей систем организма и их взаимосвязь.
- •Закономерности воспроизводства клеток. Клеточный цикл и его генетический контроль. Митоз, апоптоз и некроз клеток.
Молекулярная филогения. Принцип «нейтральной эволюции».
Молекулярная филогения- способ установления родственных связей между живыми организмами на основании изучения структуры полимерных макромолекул - ДНК, РНК и белков.
Результатом молекулярно-филогенитического анализа является построение филогенетичсекого дерева живых организмов. Филогенетическое дерево- дерево, отражающее эволюционные взаимосвязи между различными видами или другими сущностями, имеющими общего предка. Вершины филогенетического дерева делятся на три класса: листья, узлы и корень. листья – некоторый вид живого организма. узел – эволюционное событие разделения предков. корень – общий предок.
Идея «дерева» появилась в ранних взглядах на жизнь, как на процесс развития от простых форм к сложным. В наше время филогенетические деревья, как правило, реконструируются по последовательностям белков или нуклеиновых кислот (ДНК или РНК) .Важно запомнить, что филогенетические деревья не обязательно не дают полного и абсолютно правильного описания эволюционной истории. Данные, на которых они основываются, содержат шум и использовать их можно лишь в подтверждение выводов полученных по другим методикам.
Этапы построения филогенетического дерева 1. Выделение биополимеров (ДНК, РНК, белок) 2. Секвенирование (определение аминокислотной или нуклеотидной последовательности) 3. Первичная обработка сиквенсов 4. Построение деревьев с использованием специальных вычислительных (филогенетических) методов (принцип наибольшего правдоподобия, принцип Байеса, «максимальная экономия», «метод объединения соседей» - Neighbor-joining).
В основном, вывод дерева филогенетического анализа - это оценка филогении особенностей (то есть дерева гена), а не филогении таксона (то есть дерева видов), из которого были отобраны эти отличительные характерные особенности, хотя в идеале оба должны быть весьма близкими.
Примером глобального древа, охватывающего все крупнейшие таксоны биологического мира, является древо 16S–18S-рибосомных РНК, построенное американцем К. Вуузом. Наиболее неожиданным свойством этого древа является существование в нем трех крупнейших ветвей, объединяющих эубактерий (обычные бактерии), архей (особая группа бактерий) и эукариот (высшие ядерные организмы). До этой работы считалось, что бактерии составляют единое надцарство Prokariota, отделенное от второго надцарства – Eukariota – существенной дистанцией. В древе К. Вууза все три глобальные ветви примерно равно удалены друг от друга. Поэтому архей следует считать самостоятельным надцарством. Таким образом, К. Вууз ввел три надцарства, или домена: Bacteria, Archaea, Eucaryota. Древо К. Вууза построено на основании сиквенс-анализа генов 16S и 18S рРНК, кодируемых не только ядерными генами, но и генами клеточных органелл – митохондрий и хлоропластов. Легко заметить, что ядерная фракция рРНК кукурузы (Zea mays) попадает в ветвь эукариот, как и ожидается, а фракции из митохондрий и хлоропластов кукурузы (Zea mays mitochondrion, chloroplast) – в ветвь эубактерий. Первые молекулярные древа животного царства, основанные на анализе единичных генов и очень небольшом количестве видов, отличались низкой устойчивостью и потому вызывали мало доверия. Очень скоро стало ясно, что чем больше генов и групп животных вовлечено в анализ, тем устойчивее и надежнее становятся результаты. Исследования 77 видов, относящихся к 21 типу животных, позволили построить новейший вариант молекулярного эволюционного древа животных, основанный на рекордном количестве генов (150) и групп животных.
Теория нейтральной эволюции была предложена в 1968 г. М. Кимурой на основании данных популяционной генетики и на установленных скоростях замещений аминокислотных остатков в ряде белков и нуклеотидов в нуклеиновых кислотах. Суть этой теории можно изложить в виде пяти постулатов, первые четыре из которых – эмпирические, а пятый – установлен теоретическим путем. 1. Скорость эволюции любого белка, выраженная через число аминокислотных замен на сайт в год, приблизительно постоянна и одинакова в разных филогенетических линиях, если функция и третичная структура этого белка остаются в основном неизменными. Этот постулат формулирует гипотезу Э. Цукеркэндла и Л. Полинга о молекулярных эволюционных часах. 2. Функционально менее важные молекулы или их части эволюционируют (накапливая мутационные замены) быстрее, чем более важные. 3. Мутационные замены, приводящие к меньшим нарушениям структуры и функции молекулы (консервативные замены) в ходе эволюции происходят чаще тех, которые вызывают более существенное нарушение структуры и функции этой молекулы. 4. Появлению нового в функциональном отношении белка всегда должна предшествовать дупликация гена. 5. Селективная элиминация вредных мутаций и случайная фиксация селективно нейтральных или очень слабо вредных мутаций происходит в ходе эволюции гораздо чаще, чем положительный дарвиновский отбор благоприятных мутаций. Н. Суеока разработал первичный вариант теории мутационного давления в 60-е годы XX века. Данная теория, основанная на эмпирических данных, провозгласила основной причиной возникновения генных мутаций направленное мутационное давление. Мутационное давление, согласно Н. Суеоке, представляет собой фактор молекулярной эволюции, дающий материал для естественного отбора. Оно обусловлено повышенной частотой возникновения и фиксации нуклеотидных замещений аденина и тимина на гуанин и цитозин относительно частоты возникновения и фиксации замен гуанина и цитозина на аденин и тимин (GC-давление), или наоборот (AT- давление). Общим проявлением мутационного давления является закономерное снижение или повышение уровня GC-насыщенности генома (или хромосомы) в ряду поколений. Причины возникновения мутационного давления до сих пор неизвестны. Это могут быть процессы дезаминирования нуклеотидов (ферментативного и спонтанного), периодическое возникновение ошибок в процессе репликации и репарации ДНК за счет встраивания в цепочку ДНК 8-оксо-ГТФ или за счет дефектов работы самих ДНК-полимераз. Теория Н. Суеоки во многом базируется на теории нейтральной эволюции и не противоречит ее основным положениям. С момента опубликования базовых теорий начинается второй этап развития молекулярной эволюции как науки. Этот этап характеризуется разработкой большого количества методов молекулярной эволюции и филогенетики с последующим определением их эффективности при помощи компьютерного моделирования.
