- •Введение в теорию вероятностей часть 2
- •Введение в теорию вероятностей часть 2
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 6 найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0, 995 попадет нсв х в результате испытания.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную а, функцию распределения и вероятность выполнения неравенства .
- •Нсв х распределена по показательному закону с параметром 3. Найти вероятность того, что в результате испытания нсв х примет значение, лежащее на интервале (0,05 ; 1,5)
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную а, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 6 найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0, 995 попадет нсв х в результате испытания.
- •Введение в теорию вероятностей часть 2
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства
- •Нсв х распределена по показательному закону с параметром 0,6. Найти вероятность того, что в результате испытания нсв х примет значение, лежащее на интервале (1 ; 4).
- •Введение в теорию вероятностей часть 2
- •Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
- •Введение в теорию вероятностей часть 2
Введение в теорию вероятностей часть 2
Вариант 5
Брошены две одинаковые игральные кости. ДСВ - число появлений шести очков. Получить закон распределения ДСВ. Построить график функции распределения.
В условиях задачи 1 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение ДСВ = число появлений шести очков
Вероятность наступления события А в одном испытании равна 0,3. Опыт повторяют до наступления события А. Определить математическое ожидание ДСВ = число повторений опыта . Вычислить вероятность того, что А наступит в третьем испытании.
Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
В условиях задачи 4 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение нсв х.
НСВ Х распределена по нормальному закону с параметрами
.
Определить вероятность выполнения
неравенства
.
В условиях задачи 6 найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0, 9975 попадет НСВ Х в результате испытания.
НСВ Х распределена по показательному закону с параметром 2. Найти вероятность того, что в результате испытания НСВ Х примет значение, лежащее на интервале (0,1 ; 0,8).
Среднее значение длины детали – 50 см. Дисперсия равна 0,1. Пользуясь неравенством Чебышева, оценить вероятность того, что случайно взятая деталь окажется по длине не менее 49,5 см и не более 50,5 см.
Задан закон распределения двумерной ДСВ. Вычислить вероятность события В=
Введение в теорию вероятностей часть 2
Вариант 6
По цели производится два независимых выстрела. Вероятность попадания в цель при каждом выстреле равна 0,5. Получить закон распределения числа попаданий, построить полигон распределения и график функции распределения.
В условиях задачи 1 определить моду, математическое ожидание, дисперсию и среднеквадратичное отклонение ДСВ = число попаданий
Испытания образца композита на прочность проводятся до разрушения образца. Вероятность разрушения образца в каждом испытании равна 0,2. Определить математическое ожидание ДСВ = число испытаний . Вычислить вероятность того, что образец разрушится при третьем испытании.
Задана плотность распределения нсв х . Найти постоянную с, функцию распределения и вероятность выполнения неравенства .
Задана плотность распределения НСВ Х
.
Определить моду, математическое
ожидание, дисперсию и среднеквадратичное
отклонение НСВ Х.
Найти вероятность того, что нормальная случайная величина Х с математическим ожиданием, равным нулю, и дисперсией, равной четырем, примет значение, меньшее нуля, но большее (– 6) .
В условиях задачи 6 найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью 0, 995 попадет нсв х в результате испытания.
НСВ Х распределена по показательному закону с параметром 0,1. Найти вероятность того, что в результате испытания НСВ Х примет значение, большее 1.
Вероятность появления события А в каждом испытании равно 0,5. Пользуясь неравенством Чебышева, оценить вероятность того, что число появлений события А будет заключено в пределах от 40 до 60, если будет произведено 100 независимых испытаний.
Задан закон распределения двумерной ДСВ.
.
Вычислить вероятность события А=
