- •1 Современная система войсковых технических средств защиты, ее роль и место в боевом обеспечении войск
- •2.1 Защита от поражающих факторов ядерного оружия
- •2.2 Защита от химического оружия
- •2.3 Защита от биологического оружия
- •2.4 Защита от зажигательных веществ
- •3 Назначение и классификация средств защиты
- •3.1 Классификация средств защиты
- •4 ТеорИя и техника средств и способов защиты от ингаляционных поражений аэрозолями физиологически активных веществ
- •4.1 Характеристика и свойства физиологически активных аэрозолей
- •4.1.1 Понятие об аэрозолях, их классификация и некоторые свойства
- •4.1.2 Основные виды физиологически активных аэрозолей
- •4.1.3 Другие виды физиологически активных аэрозолей
- •4.2 Фильтрация аэрозолей волокнистыми фильтрующими материалами
- •4.2.1 Роль фильтрующих материалов в процессе очистки воздуха от аэрозолей физиологически активных веществ
- •4.2.1.1 Причины плохой фильтрации аэрозолей поглощающим слоем (шихтой) противогаза
- •4.2.1.2 Основные компоненты современных фильтрующих материалов
- •4.2.1.3 Типы фильтрующих материалов, применяемых в средствах защиты
- •4.2.2 Качественные представления теории фильтрации аэрозолей
- •4.3 Эффективность фильтрации. Уравнение фильтрации и его анализ
- •4.3.1 Эффективность осаждения аэрозольных частиц
- •4.3.2 Анализ уравнения фильтрации
- •4.4 Оптимизация защитных и эксплуатационных свойств противоаэрозольных фильтров. Критерий фильтрации
- •4.4.1 Коэффициент проницаемости и аэродинамическое сопротивление противоаэрозольных фильтров, их зависимость от различных факторов
- •4.4.2 Селективные свойства фильтрующих материалов
- •4.4.3 Критерий фильтрации
- •5 Теория и техника средств и способов защиты от ингаляционных поражений парами физиологически активных веществ
- •5.1 Основные принципы поглощения паров и газов. Сорбенты, применяемые в современных средствах защиты
- •5.1.1 Необходимость использования сорбционных процессов при очистке воздуха в средствах защиты
- •5.1.2 Виды сорбции паров и газов
- •5.2 Сорбенты, применяемые в современных средствах защиты
- •5.2.1 Пористая структура сорбентов
- •5.2.2 Основные виды сорбентов
- •5.3 Основы производства углеродных адсорбентов
- •5.3.1. Сырье для производства активных углей
- •5.3.2. Причины формирования микропористой структуры активных углей
- •5.3.3 Технология получения гранулированного активного угля
- •5.3.3.1 Основные стадии производства гранулированного активного угля Технологическая схема производства гранулированного активного угля представлена на рисунке 5.2.
- •5.3.3.2 Методы активирования углеродных сорбентов
- •5.3.4 Типы микропористой структуры активных углей
- •5.3.5 Получение углей-катализаторов
- •5.4 Требования к сорбентам средств защиты по поглощающим свойствам
- •5.5 Теоретические представления о физической адсорбции. Основы теории объемного заполнения микропор
- •5.5.1 Силы межмолекулярного взаимодействия при физической адсорбции
- •5.5.2 Зависимости, характеризующие физическую адсорбцию
- •5.5.3 Основы теории объемного заполнения микропор
- •5.5.3.1 Основные положения теории объемного заполнения микропор
- •5.5.4 Анализ уравнения Дубинина-Радушкевича
- •5.5.4.1 Влияние на величину адсорбции условий поглощения
- •5.5.4.2 Влияние на величину адсорбции параметров микропористой структуры адсорбента
- •5.5.4.3. Влияние на величину адсорбции физико-химических свойств веществ
- •5.5.5 Каталитический и хемосорбционный принципы поглощения паров и газов. Основные реакции
- •5.5.5.1 Каталитическая адсорбция паров тх
- •5.5.5.2 Химическая адсорбция паров тх
- •6 Теоретические основы прогнозирования возможностей средств защиты по поглощению паров физиологически активных веществ
- •6.1 Основные понятия динамики адсорбции. Стадии динамики адсорбции
- •6.1.1 Общее представление о процессе поглощения слоем сорбента примеси из потока воздушного потока
- •6.1.2 Основные понятия динамики адсорбции
- •6.2 Неравновесная динамика адсорбции с учетом продольной диффузии и без нее. Уравнение Шилова
- •6.2.1 Кинетика адсорбции
- •6.2.2 Продольный перенос вещества
- •6.2.3 Уравнение Шилова и его анализ
- •6.3 Математические модели динамики адсорбции паров
- •Таким образом, уравнение материального баланса примет вид
- •7 Теоретические основы устройства лицевых частей и герметизации подмасочного пространства
- •7.1 Причины поступления зараженного воздуха в подмасочное пространство
- •7.1.1 Коэффициент подсоса лицевых частей
- •7.1.2 Подсос воздуха через полосу обтюрации
- •7.1.3 Подсос воздуха через клапаны выдоха
- •7.2 Влияние конструктивных особенностей лицевых частей на их защитные и эргономические характеристики
- •7.3 Методы оценки коэффициента подсоса лицевых частей
- •7.4 Современные средства индивидуальной защиты органов дыхания фильтрующего типа
- •7.4.1 Общевойсковой фильтрующий противогаз пмк-2
- •7.4.2 Защитный комплект пкр
- •7.4.2.1 Противогаз пмк-3
- •7.4.2.2 Общевойсковой универсальный респиратор роу
- •7.4.3 Специальные противогазы фильтрующего типа
- •7.4.3.1. Специальный фильтрующий противогаз ракетных войск прв-м
- •7.4.3.2 Специальный фильтрующий противогаз пфр-м
- •7.4.3.3 Авиационный летный фильтрующий противогаз пфл
- •7.5 Гражданские средства индивидуальной защиты органов дыхания
- •7.5.1 Противогаз гражданский гп-7 (гп-7в)
- •7.5.2 Противогаз гражданский гп-7вм-с
- •Фильтрующе-поглощающая коробка гп-7к-с (ту 2568-118-05795731-2002) предназначена для очистки воздуха, вдыхаемого человеком, от отравляющих веществ, радиоактивной пыли и бактериальных аэрозолей.
- •7.5.3 Гражданский противогаз гп-7вм
- •7.5.4 Противогаз фильтрующий вк
- •7.5.5 Универсальная защитная система вк (узс вк)
- •7.5.6 Дополнительный патрон дпг-3 вр
- •7.6 Промышленные средства индивидуальной защиты органов дыхания
- •7.6.1 Промышленный противогаз модульного типа ппфм-92
- •7.6.2 Промышленный противогаз малого габарита пфмг-96
- •7.6.3 Промышленный противогаз среднего габарита пфсг-98 Супер
- •7.6.4 Промышленные фильтрующие респираторы
- •7.6.4.1 Респиратор противогазовый рпг-67
- •7.6.4.2 Респиратор универсальный ру-60м
- •7.6.4.3 Респиратор ф-62ш
- •7.6.5 Промышленные фильтрующие средства защиты органов дыхания от радиоактивных веществ
- •7.6.6 Перспективы развития средств индивидуальной защиты органов дыхания
- •8 Процесс регенерации воздуха и инженерные основы устройства изолирующих дыхательных аппаратов
- •8.1 Физические и физико-химические процессы при регенерации воздуха
- •8.1.1 История развития дыхательных аппаратов, использующих принцип регенерации воздуха
- •8.1.2 Необходимость использования изолирующих дыхательных аппаратов
- •8.1.3 Основы регенерации воздуха
- •8.2 Регенеративные продукты. Основные реакции регенерации в пусковых брикетах и блоковых продуктах
- •8.3. Принципы устройства изолирующих дыхательных аппаратов. Требования к изолирующим дыхательным аппаратам
- •8.3.1. Общие сведения об изолирующих дыхательных аппаратах
- •Рассмотрим особенности устройства изолирующих дыхательных аппаратов на сжатом воздухе. Схема устройства ида, работающего на сжатом воздухе показана на рисунке 8.2.
- •8.3.2 Требования к изолирующим дыхательным аппаратам
- •8.3.3 Принципы обеспечения защиты органов дыхания, реализуемые в ида на химически связанном кислороде
- •8.3.4 Расчет продолжительности работы регенеративного патрона
- •8.4 Назначение, принцип действия, устройство, комплектность и ттх изолирующих дыхательных аппаратов, находящихся на снабжении Российской Армии
- •8.4.1 Изолирующий дыхательный аппарат ип-4м
- •8.4.2 Изолирующий дыхательный аппарат ип-5
- •8.4.3 Портативный дыхательный аппарат пда-3
- •8.5 Промышленные изолирующие респираторы и самоспасатели
- •8.5.1 Респиратор изолирующий регенеративный на сжатом кислороде р-300
- •8.5.2 Самоспасатели изолирующие на химически связанном кислороде
- •8.5.2.1 Портативное дыхательное устройство пду-3
- •8.5.2.2 Самоспасатель промышленный изолирующий спи-20
- •8.6 Противогазы шланговые
- •9 Теория и техника средств и способов защиты глаз от светового излучения ядерного взрыва
- •9.1 Проблема защиты глаз от светового излучения ядерного взрыва
- •9.1.1 Характеристика светового излучения ядерного взрыва
- •9.1.1.1 Параметры светящейся области ядерного взрыва
- •9.1.1.2 Параметры светового излучения ядерного взрыва
- •9.1.1.3 Параметры облучения
- •9.1.1.4 Необходимость защиты глаз от сияв
- •9.1.1.5 Основные поражения органов зрения сияв
- •9.2 Принципы и способы защиты глаз от светового излучения ядерного взрыва, их реализация в современных образцах
- •9.2.1 Принципы защитного действия средств защиты глаз
- •9.2.2 Средства защиты глаз от сияв
- •9.3 Требования к средствам индивидуальной защиты глаз от светового излучения ядерного взрыва
- •10 Теория и техника средств и способов защиты кожных покровов от светового излучения ядерного взрыва и зажигательного оружия
- •10.1 Характеристика основных термических поражающих факторов. Требования к средствам защиты кожи от сияв
- •10.1.1 Проблема защиты кожных покровов от сияв
- •Требования к средствам защиты кожи от сияв:
- •10.1.2 Проблема защиты кожных покровов от теплового излучения горящих зажигательных веществ
- •10.2 Общие представления о механизмах теплопереноса и массопереноса в материалах средств защиты кожи
- •10.2.1 Механизмы теплопереноса и массопереноса в защитных материалах средств защиты кожи при воздействии сияв и теплового излучения
- •10.3 Принципы защиты кожных покровов от сияв и теплового излучения горящих зажигательных веществ, их реализация в средствах защиты кожи
- •11 Теоретические основы защиты кожных покровов от радиоактивных веществ и биологических аэрозолей
- •11.1 Проблема защиты кожных покровов от радиоактивных веществ
- •11.1.1 Понятие радиоактивности
- •11.1.2 Источники радиоактивного загрязнения кожных покровов
- •11.1.3 Необходимость защиты кожи от радиоактивных веществ
- •11.2 Принципы и способы защиты кожи от радиоактивных веществ, их реализация в современных образцах
- •11.2.1 Принципы обеспечения защиты кожи от радиоактивных веществ
- •11.2.2 Материалы для средств защиты кожи от радиоактивных веществ
- •11.3 Проблема и особенности защиты кожи от биологических аэрозолей
- •11.3.1 Характеристики биологического аэрозоля как поражающего фактора
- •11.3.2 Пути поступления биологических агентов к кожным покровам
- •11.3.3 Требования к средствам защиты кожи по обеспечению защиты от биологических аэрозолей
- •12 Теория и техника средств и способов защиты кожных покровов от тх и ахов средствами защиты кожи фильтрующего типа
- •12.1 Проблема защиты кожи от физиологически активных веществ
- •12.2 Защита кожных покровов от физиологически активных веществ фильтрующими материалами
- •12.2.1 Принципы защиты кожи от паров тх
- •12.2.2 Защитные свойства фильтрующих материалов от паров тх
- •12.2.3 Защитные свойства фильтрующих материалов от капель тх
- •12.3 Механизм и математические модели массопереноса физиологически активных веществ в средствах индивидуальной защиты кожи фильтрующего типа
- •12.3.1 Механизм проникания капель тх сквозь материалы сизк фильтрующего типа
- •12.3.2 Механизм проникания паров тх в фильтрующих средствах защиты кожи и закономерности подвода
- •12.3.3 Механизм и закономерности поглощения паров тх
- •12.3.4 Кинетика проникания паров тх сквозь фильтрующий защитный материал
- •12.4 Современные средства индивидуальной защиты кожи фильтрующего типа личного состава Российской Армии и перспективы их развития
- •12.4.1 Общевойсковой комплексный защитный костюм модернизированный окзк-м и десантный окзк-д
- •12.4.2 Комплект защитной фильтрующей одежды кзфо
- •«Атом» и «газы»
- •12.4.3 Комплект защитной одежды кзо-т
- •12.4.4 Комплект защитной одежды кзо-л
- •12.4.5 Комплект одежды защитной фильтрующей фзо-р
- •12.5 Перспективы развития средств индивидуальной защиты кожи фильтрующего типа
- •12.6 Промышленные средства индивидуальной защиты кожи фильтрующего типа
- •12.6.1 Промышленные средства индивидуальной защиты кожи фильтрующего типа от токсичных и агрессивных веществ
- •12.6.2 Промышленные средства индивидуальной защиты кожи от радиоактивных веществ и ионизирующих излучений
- •13 Теория и техника средств и способов защиты кожных покровов от тх и ахов средствами защиты кожи изолирующего типа
- •13.1 Материалы для изолирующих средств защиты кожи
- •13.1.1 Основные каучуки и резины, используемые для изготовления материалов средств защиты
- •13.1.2 Пленкообразующие полимеры
- •13.1.3 Краткая характеристика технологий изготовления изолирующих защитных материалов
- •13.1.4 Современные защитные материалы, конструкции и технологии
- •13.1.5 Характеристики основных изолирующих материалов средств защиты кожи
- •13.2 Проникание физиологически активных веществ через изолирующие защитные материалы
- •13.2.1 Причины проникания физиологически активных веществ сквозь полимерные материалы
- •13.3 Влияние конструкционных и эксплуатационных факторов на время защитного действия изолирующих материалов
- •13.4 Механизмы и математические модели массопереноса отравляющих и аварийно опасных химических веществ в изолирующих материалах
- •13.5 Влияние герметичности изолирующих сизк на их защитные свойства
- •13.6 Современные средства индивидуальной защиты кожи изолирующего типа личного состава Российской Армии и перспективы их развития
- •13.6.1 Общевойсковой защитный комплект озк
- •Костюм легкий защитный л-1
- •13.6.3 Костюм защитный с вентилируемым подкостюмным пространством кзвп-м
- •Защитные свойства кзвп-м обеспечиваются:
- •13.6.4 Другие виды специальных сизк изолирующего типа
- •13.6.5. Перспективы развития средств индивидуальной защиты кожи изолирующего типа
- •13.6.5.1 Костюм защитный с вентилируемым подкостюмным пространством сиз-2 упв
- •13.6.6 Промышленные средства защиты кожи изолирующего типа
- •13.6.6.1 Костюм изолирующий химический ких-4м
- •13.6.6.2 Костюм изолирующий химический ких-5м
- •13.6.6.3 Изолирующий костюм «металлор-2»
- •13.6.6.4 Комплект защитный аварийный кза-1
- •13.6.6.5 Защитный комплект ч-20
- •13.6.6.6 Изолирующий пневмокостюм км-1
- •13.6.6.7 Изолирующий комплект «кондор»
- •13.6.7 Промышленные средства индивидуальной защиты кожи изолирующего типа от радиоактивных веществ
- •13.6.7.1 Комплект защитный модульного типа зкмт
- •13.6.7.2 Шланговые изолирующие пневмокостюмы типа лг
- •13.6.8 Промышленные средства защиты рук и ног
5.5.3 Основы теории объемного заполнения микропор
5.5.3.1 Основные положения теории объемного заполнения микропор
Современное научное представление об объемном заполнении микропор при адсорбции газов и паров было развито у нас в стране академиком М.М.Дубининым и его школой. На основе экспериментальных исследований фундаментального характера им были разработаны основные положения теории физической адсорбции газов и паров для адсорбентов, обладающих микропористой структурой, то есть имеющих поры соизмеримые с молекулами.
Исходным положением теории служит представление об объемном заполнении микропор в процессе адсорбции. При этом, основным параметром является предельная величина адсорбции а0, соответствующая заполнению всего адсорбированного пространства W0 (примерно соответствующего объему микропор сорбента), адсорбируемыми молекулами.
В качестве основной термодинамической функции в теории объемного заполнения микропор используется дифференциальная мольная работа адсорбции А, равная со знаком минус изменению свободной энергии Гиббса при адсорбции
,
(5.1)
где P0 – равновесное давление при температуре Т;
PS – давление насыщенного пара адсорбируемого вещества.
Под дифференциальной мольной работой адсорбции понимается работа адсорбционных сил по перемещению одного моля пара из окружающей среды и по сжатию этого пара. Поскольку в активном угле микропоры имеют различные размеры и форму, то заполнение этих пор паром при адсорбции происходит не одновременно. При малой концентрации пара в первую очередь заполняются самые мелкие поры. По мере увеличения концентрации пара им будут заполняться более крупные микропоры, а величина дифференциальной мольной работы адсорбции А будет уменьшаться. Следовательно, при данной концентрации пара каждому значению дифференциальной мольной работы адсорбции соответствует определенное значение объема заполненного пространства W. Объем адсорбированного вещества характеризуется объемом заполненного пространства, отнесенного к единице массы сорбента и равным
,
(5.2)
где V – молярный объем адсорбированного вещества, см3/ммоль;
а – равновесная величина адсорбции, ммоль/г.
Связь между величинами объема заполненного пространства W и дифференциальной мольной адсорбцией А в общем виде выражается следующим уравнением
.
(5.3)
Это уравнение носит название характеристического уравнения. Графически оно описывается кривой, которая при А = 0 пересекает ось ординат на расстоянии W = W0, где W0 – предельный объем заполненного адсорбционного пространства или объем микропор адсорбента. Характеристические кривые адсорбции паров двух веществ на активном угле, вычисленные по изотермам адсорбции при различных температурах представлены на рисунке 5.5.
Рисунок 5.5 – Характеристические кривые адсорбции паров веществ 1 и 2 на активном угле
Отметим два основных свойства характеристической кривой адсорбции. Во-первых, она не зависит от температуры. Изотермы адсорбции одного вещества, полученные на одном и том же адсорбенте при различных температурах, представляют собой единую характеристическую кривую адсорбции. Таким образом, характеристическая кривая адсорбции обладает свойством температурной инвариантности (независимости). Во-вторых, характеристические кривые адсорбции двух веществ, полученные на одном и том же адсорбенте, подобны, или аффинны.
Функциональная связь между величинами W и А хорошо описывается статистическим законом распределения Гаусса, то есть уравнением вида
,
(5.4)
где W – заполненный объем адсорбционного пространства;
W0 – предельный объем адсорбционного пространства;
k – структурная константа, зависящая от радиуса микропор,
доступных для молекул данного адсорбируемого вещества;
А – дифференциальная мольная работа адсорбции.
Уравнение (5.4) описывает распределение заполненных объемов адсорбционного пространства W по дифференциальным мольным работам адсорбции А. Кроме того, оказалось, что для равных расстояний от поверхности одного и того же сорбента (то есть для равных объемов W) отношение адсорбционных потенциалов для двух различных парообразных веществ является постоянным и равным в первом приближении постоянной величине β (коэффициент аффинности или подобия). Поэтому, пользуясь уравнением (3.4) и зная равновесную величину адсорбции для данного стандартного пара (обычно бензола), можно вычислить величину равновесной адсорбции пара любой другой нормальной жидкости при равных степенях заполнения адсорбционного пространства, то есть при W1 = W2. При этом, дифференциальные мольные работы адсорбции любого парообразного вещества и стандартного пара (бензола) связаны между собой соотношением
,
(5.5)
где А – дифференциальная мольная работа адсорбции пара;
А0 – дифференциальная мольная работа адсорбции бензола.
Как отмечалось ранее, ординаты характеристических кривых для двух парообразных веществ находятся в постоянном отношении β. Такие кривые носят название аффинных или подобных, отсюда и название коэффициента аффинности.
Васьковским было показано, что с удовлетворительным приближением коэффициент аффинности β может быть выражен отношением парахоров или молекулярных объемов жидких веществ – адсорбируемого и стандартного
.
(5.6)
Уравнение характеристической кривой для стандартного пара имеет вид
.
(5.7)
Очевидно, что при равной доступности адсорбционного пространства заполнению молекулами бензола и других веществ WБ = W и известном соотношении АБ = А/β в уравнение (5.7) можно ввести соответствующие характеристики любого пара. Тогда
.
(5.8)
Заменив величины W и А их значениями из уравнений (5.1) и (5.2), получим окончательно следующее уравнение теории объемного заполнения микропор (ТОЗМ), которое обычно применяется для описания адсорбции паров любых веществ на всех углеродных сорбентах
или
, (5.9)
где W0 – предельный объем адсорбционного пространства, см 3/г;
V* – мольный объем адсорбированного вещества, см 3/моль;
R – универсальная газовая постоянная, Дж/моль К;
Т – температура, К;
CS (РS) – концентрация (давление) насыщенного пара адсорбтива, мг/л (Па);
С (Р) – концентрация (давление) пара вещества, мг/л (Па);
b – коэффициент аффинности;
E0 – характеристическая энергия адсорбции, кДж/моль.
Термодинамическое уравнение ТОЗМ (5.9) известно в литературе как уравнение Дубинина-Радушкевича.
Теория объемного заполнения микропор и ее расчетный аппарат позволяют провести анализ зависимости величины адсорбции (поглощения) паров вредных веществ (ТХ и АХОВ) от их физико-химических свойств, от характеристик адсорбента и от условий адсорбции. Термодинамическое уравнение ТОЗМ (5.9) показывает, что величина равновесной адсорбции определяется:
- физико-химическими свойствами адсорбируемого вещества (V* и СS);
- параметрами микропористой структуры и энергетическими характеристиками сорбента (W0 и Е0);
- условиями адсорбции (Т и С).
