- •1 Современная система войсковых технических средств защиты, ее роль и место в боевом обеспечении войск
- •2.1 Защита от поражающих факторов ядерного оружия
- •2.2 Защита от химического оружия
- •2.3 Защита от биологического оружия
- •2.4 Защита от зажигательных веществ
- •3 Назначение и классификация средств защиты
- •3.1 Классификация средств защиты
- •4 ТеорИя и техника средств и способов защиты от ингаляционных поражений аэрозолями физиологически активных веществ
- •4.1 Характеристика и свойства физиологически активных аэрозолей
- •4.1.1 Понятие об аэрозолях, их классификация и некоторые свойства
- •4.1.2 Основные виды физиологически активных аэрозолей
- •4.1.3 Другие виды физиологически активных аэрозолей
- •4.2 Фильтрация аэрозолей волокнистыми фильтрующими материалами
- •4.2.1 Роль фильтрующих материалов в процессе очистки воздуха от аэрозолей физиологически активных веществ
- •4.2.1.1 Причины плохой фильтрации аэрозолей поглощающим слоем (шихтой) противогаза
- •4.2.1.2 Основные компоненты современных фильтрующих материалов
- •4.2.1.3 Типы фильтрующих материалов, применяемых в средствах защиты
- •4.2.2 Качественные представления теории фильтрации аэрозолей
- •4.3 Эффективность фильтрации. Уравнение фильтрации и его анализ
- •4.3.1 Эффективность осаждения аэрозольных частиц
- •4.3.2 Анализ уравнения фильтрации
- •4.4 Оптимизация защитных и эксплуатационных свойств противоаэрозольных фильтров. Критерий фильтрации
- •4.4.1 Коэффициент проницаемости и аэродинамическое сопротивление противоаэрозольных фильтров, их зависимость от различных факторов
- •4.4.2 Селективные свойства фильтрующих материалов
- •4.4.3 Критерий фильтрации
- •5 Теория и техника средств и способов защиты от ингаляционных поражений парами физиологически активных веществ
- •5.1 Основные принципы поглощения паров и газов. Сорбенты, применяемые в современных средствах защиты
- •5.1.1 Необходимость использования сорбционных процессов при очистке воздуха в средствах защиты
- •5.1.2 Виды сорбции паров и газов
- •5.2 Сорбенты, применяемые в современных средствах защиты
- •5.2.1 Пористая структура сорбентов
- •5.2.2 Основные виды сорбентов
- •5.3 Основы производства углеродных адсорбентов
- •5.3.1. Сырье для производства активных углей
- •5.3.2. Причины формирования микропористой структуры активных углей
- •5.3.3 Технология получения гранулированного активного угля
- •5.3.3.1 Основные стадии производства гранулированного активного угля Технологическая схема производства гранулированного активного угля представлена на рисунке 5.2.
- •5.3.3.2 Методы активирования углеродных сорбентов
- •5.3.4 Типы микропористой структуры активных углей
- •5.3.5 Получение углей-катализаторов
- •5.4 Требования к сорбентам средств защиты по поглощающим свойствам
- •5.5 Теоретические представления о физической адсорбции. Основы теории объемного заполнения микропор
- •5.5.1 Силы межмолекулярного взаимодействия при физической адсорбции
- •5.5.2 Зависимости, характеризующие физическую адсорбцию
- •5.5.3 Основы теории объемного заполнения микропор
- •5.5.3.1 Основные положения теории объемного заполнения микропор
- •5.5.4 Анализ уравнения Дубинина-Радушкевича
- •5.5.4.1 Влияние на величину адсорбции условий поглощения
- •5.5.4.2 Влияние на величину адсорбции параметров микропористой структуры адсорбента
- •5.5.4.3. Влияние на величину адсорбции физико-химических свойств веществ
- •5.5.5 Каталитический и хемосорбционный принципы поглощения паров и газов. Основные реакции
- •5.5.5.1 Каталитическая адсорбция паров тх
- •5.5.5.2 Химическая адсорбция паров тх
- •6 Теоретические основы прогнозирования возможностей средств защиты по поглощению паров физиологически активных веществ
- •6.1 Основные понятия динамики адсорбции. Стадии динамики адсорбции
- •6.1.1 Общее представление о процессе поглощения слоем сорбента примеси из потока воздушного потока
- •6.1.2 Основные понятия динамики адсорбции
- •6.2 Неравновесная динамика адсорбции с учетом продольной диффузии и без нее. Уравнение Шилова
- •6.2.1 Кинетика адсорбции
- •6.2.2 Продольный перенос вещества
- •6.2.3 Уравнение Шилова и его анализ
- •6.3 Математические модели динамики адсорбции паров
- •Таким образом, уравнение материального баланса примет вид
- •7 Теоретические основы устройства лицевых частей и герметизации подмасочного пространства
- •7.1 Причины поступления зараженного воздуха в подмасочное пространство
- •7.1.1 Коэффициент подсоса лицевых частей
- •7.1.2 Подсос воздуха через полосу обтюрации
- •7.1.3 Подсос воздуха через клапаны выдоха
- •7.2 Влияние конструктивных особенностей лицевых частей на их защитные и эргономические характеристики
- •7.3 Методы оценки коэффициента подсоса лицевых частей
- •7.4 Современные средства индивидуальной защиты органов дыхания фильтрующего типа
- •7.4.1 Общевойсковой фильтрующий противогаз пмк-2
- •7.4.2 Защитный комплект пкр
- •7.4.2.1 Противогаз пмк-3
- •7.4.2.2 Общевойсковой универсальный респиратор роу
- •7.4.3 Специальные противогазы фильтрующего типа
- •7.4.3.1. Специальный фильтрующий противогаз ракетных войск прв-м
- •7.4.3.2 Специальный фильтрующий противогаз пфр-м
- •7.4.3.3 Авиационный летный фильтрующий противогаз пфл
- •7.5 Гражданские средства индивидуальной защиты органов дыхания
- •7.5.1 Противогаз гражданский гп-7 (гп-7в)
- •7.5.2 Противогаз гражданский гп-7вм-с
- •Фильтрующе-поглощающая коробка гп-7к-с (ту 2568-118-05795731-2002) предназначена для очистки воздуха, вдыхаемого человеком, от отравляющих веществ, радиоактивной пыли и бактериальных аэрозолей.
- •7.5.3 Гражданский противогаз гп-7вм
- •7.5.4 Противогаз фильтрующий вк
- •7.5.5 Универсальная защитная система вк (узс вк)
- •7.5.6 Дополнительный патрон дпг-3 вр
- •7.6 Промышленные средства индивидуальной защиты органов дыхания
- •7.6.1 Промышленный противогаз модульного типа ппфм-92
- •7.6.2 Промышленный противогаз малого габарита пфмг-96
- •7.6.3 Промышленный противогаз среднего габарита пфсг-98 Супер
- •7.6.4 Промышленные фильтрующие респираторы
- •7.6.4.1 Респиратор противогазовый рпг-67
- •7.6.4.2 Респиратор универсальный ру-60м
- •7.6.4.3 Респиратор ф-62ш
- •7.6.5 Промышленные фильтрующие средства защиты органов дыхания от радиоактивных веществ
- •7.6.6 Перспективы развития средств индивидуальной защиты органов дыхания
- •8 Процесс регенерации воздуха и инженерные основы устройства изолирующих дыхательных аппаратов
- •8.1 Физические и физико-химические процессы при регенерации воздуха
- •8.1.1 История развития дыхательных аппаратов, использующих принцип регенерации воздуха
- •8.1.2 Необходимость использования изолирующих дыхательных аппаратов
- •8.1.3 Основы регенерации воздуха
- •8.2 Регенеративные продукты. Основные реакции регенерации в пусковых брикетах и блоковых продуктах
- •8.3. Принципы устройства изолирующих дыхательных аппаратов. Требования к изолирующим дыхательным аппаратам
- •8.3.1. Общие сведения об изолирующих дыхательных аппаратах
- •Рассмотрим особенности устройства изолирующих дыхательных аппаратов на сжатом воздухе. Схема устройства ида, работающего на сжатом воздухе показана на рисунке 8.2.
- •8.3.2 Требования к изолирующим дыхательным аппаратам
- •8.3.3 Принципы обеспечения защиты органов дыхания, реализуемые в ида на химически связанном кислороде
- •8.3.4 Расчет продолжительности работы регенеративного патрона
- •8.4 Назначение, принцип действия, устройство, комплектность и ттх изолирующих дыхательных аппаратов, находящихся на снабжении Российской Армии
- •8.4.1 Изолирующий дыхательный аппарат ип-4м
- •8.4.2 Изолирующий дыхательный аппарат ип-5
- •8.4.3 Портативный дыхательный аппарат пда-3
- •8.5 Промышленные изолирующие респираторы и самоспасатели
- •8.5.1 Респиратор изолирующий регенеративный на сжатом кислороде р-300
- •8.5.2 Самоспасатели изолирующие на химически связанном кислороде
- •8.5.2.1 Портативное дыхательное устройство пду-3
- •8.5.2.2 Самоспасатель промышленный изолирующий спи-20
- •8.6 Противогазы шланговые
- •9 Теория и техника средств и способов защиты глаз от светового излучения ядерного взрыва
- •9.1 Проблема защиты глаз от светового излучения ядерного взрыва
- •9.1.1 Характеристика светового излучения ядерного взрыва
- •9.1.1.1 Параметры светящейся области ядерного взрыва
- •9.1.1.2 Параметры светового излучения ядерного взрыва
- •9.1.1.3 Параметры облучения
- •9.1.1.4 Необходимость защиты глаз от сияв
- •9.1.1.5 Основные поражения органов зрения сияв
- •9.2 Принципы и способы защиты глаз от светового излучения ядерного взрыва, их реализация в современных образцах
- •9.2.1 Принципы защитного действия средств защиты глаз
- •9.2.2 Средства защиты глаз от сияв
- •9.3 Требования к средствам индивидуальной защиты глаз от светового излучения ядерного взрыва
- •10 Теория и техника средств и способов защиты кожных покровов от светового излучения ядерного взрыва и зажигательного оружия
- •10.1 Характеристика основных термических поражающих факторов. Требования к средствам защиты кожи от сияв
- •10.1.1 Проблема защиты кожных покровов от сияв
- •Требования к средствам защиты кожи от сияв:
- •10.1.2 Проблема защиты кожных покровов от теплового излучения горящих зажигательных веществ
- •10.2 Общие представления о механизмах теплопереноса и массопереноса в материалах средств защиты кожи
- •10.2.1 Механизмы теплопереноса и массопереноса в защитных материалах средств защиты кожи при воздействии сияв и теплового излучения
- •10.3 Принципы защиты кожных покровов от сияв и теплового излучения горящих зажигательных веществ, их реализация в средствах защиты кожи
- •11 Теоретические основы защиты кожных покровов от радиоактивных веществ и биологических аэрозолей
- •11.1 Проблема защиты кожных покровов от радиоактивных веществ
- •11.1.1 Понятие радиоактивности
- •11.1.2 Источники радиоактивного загрязнения кожных покровов
- •11.1.3 Необходимость защиты кожи от радиоактивных веществ
- •11.2 Принципы и способы защиты кожи от радиоактивных веществ, их реализация в современных образцах
- •11.2.1 Принципы обеспечения защиты кожи от радиоактивных веществ
- •11.2.2 Материалы для средств защиты кожи от радиоактивных веществ
- •11.3 Проблема и особенности защиты кожи от биологических аэрозолей
- •11.3.1 Характеристики биологического аэрозоля как поражающего фактора
- •11.3.2 Пути поступления биологических агентов к кожным покровам
- •11.3.3 Требования к средствам защиты кожи по обеспечению защиты от биологических аэрозолей
- •12 Теория и техника средств и способов защиты кожных покровов от тх и ахов средствами защиты кожи фильтрующего типа
- •12.1 Проблема защиты кожи от физиологически активных веществ
- •12.2 Защита кожных покровов от физиологически активных веществ фильтрующими материалами
- •12.2.1 Принципы защиты кожи от паров тх
- •12.2.2 Защитные свойства фильтрующих материалов от паров тх
- •12.2.3 Защитные свойства фильтрующих материалов от капель тх
- •12.3 Механизм и математические модели массопереноса физиологически активных веществ в средствах индивидуальной защиты кожи фильтрующего типа
- •12.3.1 Механизм проникания капель тх сквозь материалы сизк фильтрующего типа
- •12.3.2 Механизм проникания паров тх в фильтрующих средствах защиты кожи и закономерности подвода
- •12.3.3 Механизм и закономерности поглощения паров тх
- •12.3.4 Кинетика проникания паров тх сквозь фильтрующий защитный материал
- •12.4 Современные средства индивидуальной защиты кожи фильтрующего типа личного состава Российской Армии и перспективы их развития
- •12.4.1 Общевойсковой комплексный защитный костюм модернизированный окзк-м и десантный окзк-д
- •12.4.2 Комплект защитной фильтрующей одежды кзфо
- •«Атом» и «газы»
- •12.4.3 Комплект защитной одежды кзо-т
- •12.4.4 Комплект защитной одежды кзо-л
- •12.4.5 Комплект одежды защитной фильтрующей фзо-р
- •12.5 Перспективы развития средств индивидуальной защиты кожи фильтрующего типа
- •12.6 Промышленные средства индивидуальной защиты кожи фильтрующего типа
- •12.6.1 Промышленные средства индивидуальной защиты кожи фильтрующего типа от токсичных и агрессивных веществ
- •12.6.2 Промышленные средства индивидуальной защиты кожи от радиоактивных веществ и ионизирующих излучений
- •13 Теория и техника средств и способов защиты кожных покровов от тх и ахов средствами защиты кожи изолирующего типа
- •13.1 Материалы для изолирующих средств защиты кожи
- •13.1.1 Основные каучуки и резины, используемые для изготовления материалов средств защиты
- •13.1.2 Пленкообразующие полимеры
- •13.1.3 Краткая характеристика технологий изготовления изолирующих защитных материалов
- •13.1.4 Современные защитные материалы, конструкции и технологии
- •13.1.5 Характеристики основных изолирующих материалов средств защиты кожи
- •13.2 Проникание физиологически активных веществ через изолирующие защитные материалы
- •13.2.1 Причины проникания физиологически активных веществ сквозь полимерные материалы
- •13.3 Влияние конструкционных и эксплуатационных факторов на время защитного действия изолирующих материалов
- •13.4 Механизмы и математические модели массопереноса отравляющих и аварийно опасных химических веществ в изолирующих материалах
- •13.5 Влияние герметичности изолирующих сизк на их защитные свойства
- •13.6 Современные средства индивидуальной защиты кожи изолирующего типа личного состава Российской Армии и перспективы их развития
- •13.6.1 Общевойсковой защитный комплект озк
- •Костюм легкий защитный л-1
- •13.6.3 Костюм защитный с вентилируемым подкостюмным пространством кзвп-м
- •Защитные свойства кзвп-м обеспечиваются:
- •13.6.4 Другие виды специальных сизк изолирующего типа
- •13.6.5. Перспективы развития средств индивидуальной защиты кожи изолирующего типа
- •13.6.5.1 Костюм защитный с вентилируемым подкостюмным пространством сиз-2 упв
- •13.6.6 Промышленные средства защиты кожи изолирующего типа
- •13.6.6.1 Костюм изолирующий химический ких-4м
- •13.6.6.2 Костюм изолирующий химический ких-5м
- •13.6.6.3 Изолирующий костюм «металлор-2»
- •13.6.6.4 Комплект защитный аварийный кза-1
- •13.6.6.5 Защитный комплект ч-20
- •13.6.6.6 Изолирующий пневмокостюм км-1
- •13.6.6.7 Изолирующий комплект «кондор»
- •13.6.7 Промышленные средства индивидуальной защиты кожи изолирующего типа от радиоактивных веществ
- •13.6.7.1 Комплект защитный модульного типа зкмт
- •13.6.7.2 Шланговые изолирующие пневмокостюмы типа лг
- •13.6.8 Промышленные средства защиты рук и ног
4.2.2 Качественные представления теории фильтрации аэрозолей
Поток аэрозоля в объеме фильтрующего материала многократно дробится на мелкие струйки, которые непрерывно смыкаются и разделяются, обтекая волокна, что способствует приближению частиц к поверхности волокон и их осаждению. Аэрозольные частицы проходят в промежутках между волокнами фильтрующего материала и под воздействием ряда причин приближаются к ним. Коснувшись волокна частицы аэрозоля прочно удерживаются на его поверхности и таким образом удаляются из потока. Таким образом, процесс фильтрации характеризуется взаимодействием взвешенных аэрозольных частиц и дисперсионной среды с элементами пористого волокнистого фильтрующего материала.
Следует заметить, что фильтрующий материал нельзя отождествлять с ситом, в котором улавливание аэрозольных частиц происходит вследствие их застрявания в порах материала. Конечно, частицы диаметром в десятки и сотни микрометров могут частично задерживаться в фильтрующем материале вследствие ситового эффекта. Однако в большинстве случаев размеры частиц аэрозолей значительно меньше размеров пор. Более того, оказалось, что наиболее проникающими являются частицы размером 0,1 - 0,5 мкм, а частицы крупнее и мельче осаждаются значительно лучше. Следовательно, в волокнистых фильтрующих материалах аэрозольные частицы улавливаются (осаждаются) в результате действия других, более сложных процессов.
Качественно процесс фильтрации аэрозолей волокнистыми материалами разделяется как бы на два этапа:
приближение частиц к поверхности волокна и касание;
удерживание частиц на поверхности волокон.
Удерживание аэрозольных частиц на поверхности фильтрующих волокон происходит благодаря проявлению сил адгезии и выполняется почти в 100 % случаев. То есть, в случае касания аэрозольной частицей поверхности волокна происходит ее прочное удерживание за счет суммарного действия молекулярных, капиллярных, кулоновских и некоторых других сил, проявление которых зависит как от свойств контактирующих тел, так и от характеристик окружающей среды.
Приближение частиц к волокнам в зависимости от условий их фильтрации может происходить вследствие различных причин или механизмов, основными из которых являются:
- диффузия или броуновское движение частиц;
- непосредственное касание или задевание фильтрующих волокон;
- инерционное смещение частиц при изменении направления воздушного потока.
При фильтрации аэрозолей приближение частиц к волокнам может осуществляться также в результате второстепенных причин или механизмов, которыми являются:
- электростатического притяжения частиц;
- седиментации, то есть осаждения частиц под действием силы тяжести;
- ситовой эффект.
Общая картина приближения аэрозольных частиц, достигающих поверхности волокон за счет различных механизмов осаждения, по линиям тока и траектории показана на рисунке 4.3.
Вклад каждой из причин приближения частиц к волокнам в общий процесс фильтрации и влияние их на фильтрующие свойства материалов могут быть оценены эффективностью осаждения частиц волокном. Рассмотрим более подробно все причины (механизмы) приближения частиц аэрозолей к волокнам.
1. Диффузионное осаждение аэрозольных частиц проявляется в том случае, когда под действием броуновского движения аэрозольная частица смещается относительно линии прохождения воздушной струйки и осаждается на поверхности волокна. Диффузионное осаждение имеет значение только для тонкодисперсных аэрозолей, особенно для частиц с радиусом менее 0,1 мкм, и наиболее полно проявляется при малых скоростях воздушного потока, когда частицы находятся вблизи волокон в течение достаточного промежутка времени. Чем меньше размеры аэрозольных частиц, тем больше их способность участвовать в броуновском движении при столкновениях с молекулами газов воздуха, и тем интенсивнее они смещаются с линии тока, что увеличивает вероятность их осаждения на поверхности обтекаемых волокон. Этот механизм осаждения подобен массообмену за счет молекулярной диффузии.
1 – диффузионное осаждение; 2 – касание (прямой захват); 3 – инерционное осаждение;
4 – электростатическое осаждение; 5 – седиментация; 6 – ситовой эффект.
Рисунок 4.3 – Механизмы подвода аэрозольных частиц к фильтрующим волокнам
2. Осаждение аэрозольных частиц за счет касания проявляется лишь тогда, когда аэрозольные частицы, двигаясь по линии тока, приближаются к поверхности волокон на расстоянии, не превышающие величин их радиусов. В этом случае частицы касаются поверхности волокон и удерживаются силами адгезионного взаимодействия. Осаждение за счет касания наиболее вероятно для частиц с радиусом более 0,1 мкм.
3. Инерционное осаждение аэрозольных частиц обусловлено инерционностью аэрозолей конечной массы, что вызывает смещение частиц с линии прохождения воздушной струйки при обтекании волокон и столкновение их с поверхностью волокон. Инерционное осаждение необходимо учитывать в процессе фильтрации при относительно больших скоростях воздушного потока и при радиусах аэрозольных частиц от 0,3 - 0,5 мкм и более.
4. Электростатическое осаждение аэрозольных частиц характерно для фильтрующих материалов, волокна которых имеют электростатический заряд. Это наиболее эффективный механизм осаждение аэрозольных частиц, вероятность осуществления которого еще более увеличивается в том случае, когда на частицах аэрозоля имеется электростатический заряд противоположного (по отношению к волокнам фильтрующего материала) знака.
5. Седиментационное осаждение аэрозольных частиц происходит при их смещении относительно линии прохождения воздушной струйки и осаждении на поверхности волокна под действием силы тяжести. Этот механизм приближения к волокнам фильтрующего материала характерен только для грубодисперсных аэрозолей.
6. Ситовой эффект осаждения аэрозольных частиц наблюдается при фильтрации грубодисперсных аэрозолей в том случае, когда размер (диаметр) аэрозольных частиц превышает расстояние между соседними волокнами фильтра. Этот механизм приближения к волокнам фильтрующего материала так же характерен только для грубодисперсных аэрозолей.
