- •Предисловие
- •Глава 1. Введение в курс «Детали машин и основы конструирования».
- •Задачи и содержание курса «Детали машин и основы конструирования»
- •1.2. Особенности курса и его изучения
- •Тенденции современного машиностроения.
- •Основные критерии работоспособности и расчета деталей машин.
- •Общая классификация деталей машин.
- •Передачи.
- •Особенности геометрии цилиндрических косозубых передач.
- •Силы в зацеплении косозубой передачи.
- •Глава 2. Расчет цилиндрических зубчатых передач на контактную выносливость
- •Причины разрушения (отказов) зубьев.
- •Предпосылки к расчету зубчатых передач на контактные напряжения.
- •Расчет зубчатых передач на контактную выносливость.
- •Расчетная нагрузка и проверочный расчет на контактную выносливость
- •Проектный расчет зубчатых передач на контактную выносливость
- •Ширина зубчатого венца.
- •Глава 3. Расчет цилиндрических зубчатых передач на изгибную выносливость
- •3.1. Эквивалентные (приведенные) цилиндрические зубчатые колёса
- •3.2. Проверочный расчет зубчатых передач на изгибную выносливость.
- •3.3. Проектный расчет зубьев на изгиб
- •Глава 4. Конические передачи.
- •4.1. Геометрические зависимости в конической передаче
- •4.2. Эквивалентное число зубьев конических передач.
- •4.3. Силы, действующие в зацеплении конических колес с прямыми зубьями
- •4.4. Конические колеса с круговыми зубьями.
- •4.5. Особенности действия сил в зацеплении круговых зубьев.
- •4.6. Расчет конических зубчатых передач на контактную прочность. Проверочный и проектный
- •4.7. Расчет на контактную прочность при действии максимальной пиковой нагрузки
- •4.8. Проверочный расчет изгибной выносливости зубьев конических колес.
- •4.9. Проектный расчет на выносливость при изгибе.
- •4.10. Условие равной прочности зубьев колеса и шестерни на изгибную выносливость
- •4.11. Проверка изгибной прочности зубьев конических колес при действии пиковых нагрузок (на пусковых режимах) для менее прочного колеса
- •5. Выбор материала и термообработки зубчатых колес
- •5.1. Допускаемые напряжения с учетом графика нагрузки.
- •5.2. Выбор допускаемых напряжений зубчатых колес с учетом графика нагрузки.
- •5.3. Допускаемые изгибающие напряжения
- •5.4. Кпд зубчатых передач.
- •Вопросы для самоконтроля
- •Глава 6. Планетарные передачи
- •6.1. Кинематика планетарных передач
- •6.2. Подбор чисел зубьев многопоточных передач.
- •6.3. Относительная частота вращения
- •6.4. Определение сил и крутящих моментов
- •6.5. Кпд планетарных передач
- •6.6. Особенности расчета планетарных передач на прочность
- •Глава 7. Червячные передачи
- •7.1. Преимущества и недостатки червячных передач.
- •7.2. Виды червячных передач и червяков
- •7.3. Геометрические зависимости в червячной передачи
- •7.4. Скорость скольжения
- •7.5. Силы, действующие в зацеплении червячной передачи
- •7.6. Кпд червячной передачи
- •7.7. Коэффициент нагрузки
- •7.8. Материалы и допускаемые напряжения
- •7.9. Типовые отказы червячных передач
- •7.10. Допускаемые напряжения для цилиндрических червячных передач
- •7.11. Расчет червячной передачи на контактную выносливость
- •7.12. Расчет червячной передачи на изгибные напряжения
- •7.13. Тепловой расчет червячной передачи
- •8. Ременные передачи
- •8.1 Геометрические параметры
- •8.2 Упругое скольжение и кинематика
- •8.3. Силы в ремне
- •8.4. Напряжение в ремне
- •8.5. Расчет ременной передачи по тяговой способности
- •8.6. Расчет плоскоременных передач
- •8.7. Клиноременные передачи
- •8.8. Силы, действующие на валы ременной передачи
- •8.9. Зубчато-ременные передачи
- •9. Соединения деталей машин
- •9.1. Сварные соединения
- •9.2. Основные типы сварных соединений
- •9.3. Сварные соединения встык
- •9.4. Соединения внахлестку
- •9.5. Расчет длины швов при несимметричной привариваемой детали
- •9.6. Расчет соединений, нагруженных моментом в плоскости шва
- •9.7. Расчет соединения в тавр
- •9.8. Допускаемые напряжения для сварных швов
- •10. Резьбовые соединения
- •10.1. Резьбовые соединения. Достоинства и недостатки.
- •10.2. Типы резьб
- •10.3. Стопорение резьбовых соединений
- •10.4. Классы прочности, материалы
- •10.5. Распределение осевой нагрузки по виткам резьбы
- •10.6. Причины разрушений и принцип расчета элементов резьбового соединения.
- •10.7. Расчет болтового соединения, нагруженного осевой силой и крутящим моментом затяжки
- •10.8. Расчет болтов, нагруженных поперечной силой в плоскости стыка
- •10.9. Моменты, действующие в резьбовом соединении
- •10.10. Кпд винтовой пары
- •10.11. Расчет предварительно затянутого резьбового соединения при действии силы перпендикулярной плоскости стыка
- •10.12. Определение податливости болта и деталей стыка
- •10.13. Расчет болтов при переменной нагрузке
- •Глава 11. Валы и оси
- •11.1. Материалы валов
- •11.2. Расчет валов на прочность
- •11.3 Расчет вала на статическую прочность
- •11.4. Проверка вала червяка на статическую прочность и построение эпюр
- •11.5 Условие жесткости
- •11.6. Шпоночные соединения
- •11.7. Расчет шпонок на прочность
- •Сегментные шпонки
- •11.9. Шлицевые (зубчатые) соединения
- •11.10.Расчет зубчатых соединений на прочность.
- •Глава 12. Подшипники качения
- •12.1. Классификация подшипников качения
- •12.2. Основные типы подшипников
- •12.3. Материалы для подшипников
- •12.4. Распределение нагрузки между телами качения (задача Штрибека)
- •12.5. Кинематика подшипников качения
- •12.6. Виды повреждений в подшипниках и способы расчетной оценки работоспособности подшипников
- •12.7. Методика выбора подшипников качения
- •12.8 Определение осевых нагрузок в радиально-упорных подшипниках
- •12.9 Выбор подшипников по статической грузоподъемности
- •12.10 Выбор подшипников, работающих при переменных режимах
- •13. Муфты соединительные
- •13.1. Муфты постоянные глухие
- •13.2. Муфты компенсирующие
- •13.3. Упругие муфты
- •13.4. Втулочно-пальцевые муфты типа мувт
- •13.5. Фрикционные муфты
- •13.6 Муфты предохранительные
- •13.7. Муфты комбинированные
- •Заключение
- •Литература
МОСКОВСКИЙ
АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)
В.Ф. Водейко
Детали машин
и основы конструирования
Учебно-методическое пособие
МОСКВА 2017
МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
(МАДИ)
В.В. ВОДЕЙКО
ДЕТАЛИ МАШИН
И ОСНОВЫ КОНСТРУИРОВАНИЯ
Допущено УМО вузов РФ по образованию в области транспортных машин и транспортно-технологических комплексов в качестве учебно-методического пособия для студентов вузов, обучающихся по направлению подготовки бакалавров «Технология транспортных процессов»
МОСКВА
МАДИ
2017
2017 УДК 531.8.624.042
ББК 34.41.30.121
В624
Рецензенты:
проф. каф. «Технология конструкционных материалов» МАДИ,
д-р техн. наук, проф. Чудина О.В.
доц. кафедры строительных конструкций МАДИ,
канд. техн. наук, доц. Иванов-Дятлов В.И.
Водейко В.Ф.
Н624 Детали машин и основы конструирования. Учебно-методическое пособие.- М.: МАДИ, 2017 - 198 с.
В настоящем учебно-методическом пособии изложены принципы расчета на прочность элементов зубчатых передач, а именно, цилиндрических, конических, планетарных, червячных, исходя из основных критериев их работоспособности. Приведены принципы рационального выбора конструкционных материалов и их термической или химико-термической обработки деталей, которые работают в условиях переменных внешних нагрузок.
Содержатся основные данные о видах дефектов деталей машин, что позволяет прогнозировать возможные причины нарушения их работоспособности в процессе эксплуатации.
В пособие включены вопросы (методы) расчета плоскоременных и клиноременных передач с использованием кривых скольжения, а также расчеты на прочность разъемных и неразъемных соединений. Приведены расчеты валов на прочность, их классификация, виды повреждений и методика выбора подшипников качения в условиях действия радиальных и осевых нагрузок с учетом эксплуатационных, технологических и экономических требований. Имеется краткое описание конструкций соединительных муфт, их свойства и применение в машиностроении.
УДК 531.8:624.042
ББК 34.41:30.121
МАДИ, 2017
Предисловие
Предлагаемое учебно-методическое пособие подготовлено автором, в течение многих лет работающим на кафедре «Детали машин и теории механизмов» МАДИ. Материал пособия базируется на систематизации основных сведений по теоретическим вопросам проектирования машин на примерах деталей общего назначения: передач, соединений, муфт и других. Приведены практические рекомендации их расчета и конструирования.
Пособие отражает многолетние традиции отечественной инженерной школы конструирования не только общего, но и специального механического оборудования - двигателей внутреннего сгорания и других систем.
Одним из ярких представителей инженерной школы является Заслуженный деятель науки и техники РСФСР, д.т.н., профессор Георгий Сергеевич Маслов, который много лет был заведующим кафедрой МАДИ и членом нескольких научно-технических советов. В том числе Центрального института авиационного моторостроения (ЦИАМ).
При написании данного пособия была поставлена цель – дать студентам в сжатой и доступной форме базовые знания о творческом процессе создания современных конструкций машин и механизмов, отвечающих ряду противоречивых требований: таких, как прочность и легкость, надежность и долговечность, технологичность и минимальная стоимость.
Cправочные данные о выпускаемых промышленностью редукторах, выборе геометрии деталей и их материалов, а также расчетных зависимостей, необходимых для курсового проектирования, представлены в списке литературы.
Настоящее пособие в значительной степени адаптировано для самостоятельной работы студентов и, особенно, студентов вечерней формы обучения.
Глава 1. Введение в курс «Детали машин и основы конструирования».
Задачи и содержание курса «Детали машин и основы конструирования»
Основная задача курса — изучение методов инженерных расчетов и проектирования на базе типовых элементов машин. Типовыми называются детали и узлы, входящие в состав большинства машин: соединения (сварные, резьбовые, шлицевые), передачи (зубчатые, червячные, ременные, цепные и др.), элементы передач (валы, подшипники, муфты).
Специальные элементы машин, применяемые в отдельных группах машин и определяющие их специфику (двигатели внутреннего сгорания, гидравлические машины) изучаются в специальных курсах, но общие методы расчета и проектирования, изучаемые в курсе «Детали машин и основы конструирования», распространяются и на специальные элементы машин.
1.2. Особенности курса и его изучения
Весьма сложные зависимости работоспособности реальных элементов машин от величины и характера нагрузки, размеров и формы деталей, материалов и их обработки, потребного срока службы и других условий вызывают необходимость введения допущений и поправочных коэффициентов при их расчетах. В этом основное отличие инженерных методов расчета от теоретических.
Многовариантность конструкторских решений и различные методы расчета вызывают необходимость находить оптимальную конструкцию в соответствие с заданными условиями работы не только механико-математическим путем, но и с учетом эстетики.
При расчете число неизвестных может превосходить число уравнений, поэтому расчет приходится вести методом последовательных приближений. Это обязывает уметь выбирать исходные величины близкие к действительным, уметь использовать современные компьютерные программы, облегчающие нахождение оптимального варианта.
Преемственность и место курса в системе обучения.
В курсе «Детали машин и основы конструирования» используются знания студентов по предшествующим курсам: сопромату, технологии металлов, взаимозаменяемости, теории механизмов и машин, инженерной графике, прикладной математике, экономике и др., составляющим общеинженерную ступень высшего образования.
Метод изучения курса.
Основа метода — самостоятельность, ритмичность, научно—исследовательский характер изучения.
Без самостоятельной работы нельзя научиться составлять расчетные схемы, оценивать условия работы, обосновать поправочные коэффициенты и допущения, нельзя овладеть методом совершенствования конструкции. Без ритмичной работы нельзя освоить огромное многообразие приемов конструирования и разновидностей методов расчета. Несовременная проработка материала прогрессивно увеличивает время самостоятельной работы. Научно – исследовательский характер изучения складывается из изучения рекомендованной литературы [1,2], глубокого представления физического смысла изучаемых вопросов, непрерывного стремления к совершенствованию компьютерного программного обеспечения, включая модель 3D.
