- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
1.3. Физико-химические свойства нефти и воды
Лекция № 4
Нефть - жидкий каустобиолит, первый представитель ряда нафтидов, способный к перемещению в недрах и поверхностных условиях. Генетически нефть – это обособившиеся в самостоятельные скопления подвижные жидкие продукты преобразования рассеянного органического вещества (РОВ) в зоне катагенеза. В химическом отношении нефть сложная смесь УВ и гетероатомных (серо-, кислород и азот содержащих) органических соединений, хорошо растворимая в органических соединениях. В физическом отношении это коллоидно-дисперсная сложноорганизованная система. Свойства: вращает плоскость поляризации вправо, молекулярная масса соединений от 100 до 40 000 (средняя 220-300). Молекулярный состав: C-82-87%, H-11-14% O2-0,7%, N2-0,3%. Углеводороды нефти представлены: алканами (0-93%), цикланами (1-80%) и аренами (3-35%) на дистальную часть.
Алканы (метановые, алифатические или парафиновые углеводороды) - класс предельных или насыщенных УВ с открытой цепью Cn H2n+2. Углеводородный скелет представляют линейные нормальные (n-алканы) или разветвленные цепи метиленовых групп (-СН2-) – изоалканы (и-алканы), основная масса которых представлена УВ с одной короткой боковой ветвью – метилалканами.
Алканы C-C4 - газообразные вещества – единственный углеводородный компонент горючих газов; C5-C15 – жидкие углеводороды; далее - твердые. Нормальные n-алканы C18 - и выше называют парафинами. В природных аэробных условиях n-алканы легко окисляются, поэтому нефти с высоким их содержанием в зоне гипергенеза отсутствуют. Часть алканов средних и высших фракций нефти связана с хемофоссилиями, т.е. химическими соединениями близкими по структуре к некоторым биологическим веществам.
Метановые УВ присутствуют во всех нефтях. Если их содержание больше 50%, то такие нефти называют метановыми. В легких нефтях обычно в максимальных концентрациях присутствуют n-алканы С5-С10. В тяжелых - их максимум сдвинут в область С18-С20. Отношение количества нечетных алканов к четным характеризует степень зрелости нефти.
Цикланы – (циклоалканы, циклопарафины, нафтены, полиметиленовые УВ) – класс насыщенных циклических УВ. Циклы построены из трех и более метиленовых групп (-СН2-). Наиболее устойчивые циклы из 5-ти (циклопентаны) и 6-ти (циклогексаны) метиленовых групп. Цикланы бывают с одним циклом в молекуле (моноциклические) и нескольким (полициклические).
Общая формула моноциклических цикланов - CnH2n, бициклических - CnH2n-2. Полицикланы (типа стеранов, гопанов, терпанов) имеют биологическое происхождение. По многим химическим свойствам цикланы подобны алканам. Почти все нефти с высоким содержанием цикланов связаны с бассейнами молодой альпийской складчатости.
Арены
–
ароматические УВ-класс углеводородов
общей формулы Cn
H2n-p
(p
= 6, 12, 14, 18, 20…36), содержащие циклы с
ароматическими связями. В нефтях
и битумоидах моноциклические арены
представлены бензолом и его гомологами,
бициклические – нафталином и бифелином,
полициклические – фенантреном,
антраценом, периленом и др. По физическим
свойствам, арены с
ильно
отличаются от алканов и цикланов и, в
частности, легко растворяются в воде.
Нефть представляет собой в основном смесь УВ метанового (парафинового) и нафтенового рядов. Она характеризуется фракционным составом: кипящие фракции до 1000С - бензин; до 1100С - бензин специальный; до 1350С – бензин 2-го сорта; до 2700С - керосин и остаток - мазут, из которого при подогреве до 400-4200С отбирают масляные фракции.
По содержанию фракций различают нефти легкие (бензиновые, масляные) и тяжелые (топливные, асфальтовые и др.). Качество нефти зависит также от содержания в ней примесей: парафина, серы, смолистых веществ и т.п.
Бензин и керосин характеризуются величиной октанового числа - характеризующего детонационную стойкость топлива. Она зависит от содержания изооктана и гептана.
Физические свойства нефти определяются при t = 200C. К ним относятся:
Плотность нефти по воде соотношение массы единиц объема нефти и воды, взятых при одинаковых Р и Т. Для различных нефтей относительная плотность нефти по воде колеблется в пределах 0,78-0,93.
Вязкость или внутреннее трение. Физическое определение вязкости нефти совпадает с определением вязкости для газов. Как и для газов для нефти различают динамическую () и кинематическую () вязкости.
Единицы измерения:
[]СИ
= Пас;
СГСЕ
=
;
1 Па = 10 Пуаз.
Вязкость нефтей колеблется в широких пределах и зависит от пластового давления, температуры и растворимого в ней газа. С увеличением температуры и растворимого газа она заметно падает.
Вязкость нефти играет большую роль при движении ее по пласту. От нее зависит также динамика обводнения залежи и условия эффективной ее добычи.
Поверхностное натяжение () заключается в противодействии нормальным силам, приложенным к ее поверхности и стремящимся изменить ее форму. Поверхностное натяжение существует на границе раздела 2-х любых фаз. На границе с воздухом поверхностное натяжение нефти составляет 2.53.5 н/м2, на границе с водой - 7.27.6 н/м2. Это свойство имеет существенное значение при движении нефти в пористой среде. Чем больше поверхностное натяжение, тем больше расходуется пластовой энергии на движение нефти, т.к. сечения каналов переменные и капля жидкости меняет свою форму. Как правило, чем больше плотность нефти, тем больше ее поверхностное натяжение; оно уменьшается с увеличением растворенного газа и повышением температуры.
Движение нефти в пласте зависит от пластовых условий ее физических свойств и наличия растворенного газа, который в процессе снижения пластового давления выделясь изменяет свойства нефти - она становится более вязкой из-за потери газа.
Таким образом, пластовая нефть представляет собой смесь жидких и газообразных УВ, которые могут находиться в однофазном (нефть с растворенным газом), либо в двухфазном (газовая нефть и свободный газ) состоянии.
Изучение свойств пластовых нефтей проводят на основе глубинных проб отобранных из скважин. Их отбирают пробоотборниками через так называемые фонтанные (насосно-компрессорные) трубы.
Связанная вода в нефтяных пластах.
Не все поровое пространство заполнено нефтью и газом; часть его занято связанной водой, которая удерживается в мелких порах и трещинах капиллярными силами. Поэтому содержание нефти и газа в пласте, когда их нельзя определить раздельно, характеризуется коэффициентом нефтегазонасыщенности
,
где: Vнг - объем нефти и газа в порах; Vn - объем пор. Кнг обычно вычисляют через коэффициент водонасыщенности (Кв), выражающий отношение объема связанной воды по всему поровому пространству:
Кнг = 1 - Кв.
Содержание связанной воды в пласте обычно тем больше, чем меньше проницаемость породы и размеры поровых каналов, а также чем больше этих каналов.
Коэффициент
Кв
определяется лабораторным путем по
образцам керна из глубоких скважин, а
также по данным промысловой геофизики,
используя петрофизическую зависимость:
где: Pн
- параметр насыщения;
а коэффициент; n показатель степени, зависящий от структуры порового пространства; n сопротивление пласта; вп сопротивление пласта, полностью насыщенного водой.
Схема определения коэффициента Кнг, следующая:
-
измеряют сопротивление пласта n
в контуре и вn
в законтурной части залежи и вычисляют
параметр насыщения
;
-
по найденному параметру насыщения
определяют значение Кв
по имеющейся
петрофизической зависимости
;
- вычисляют Кn = 1- Кв.
Если значение вn измерить не удается, то его вычисляют через параметр пористости, а последний определяют, используя петрофизическую зависимость параметра пористости (Pп) от пористости:
,
где: P п
параметр пористости; вn
сопротивление водяного пласта;
в
сопротивление воды; b
коэффициент; Кn
коэффициент пористости; m
показатель степени, зависящий от
структуры порового пространства.
Подземные воды нефтяных и газовых месторождений.
Подземные воды встречаются в большинстве нефтяных и газовых месторождений и являются обычными спутниками нефти и газа. Часто воды находят-
ся в тех же пластах (коллекторах), что нефть и газ, и в этом случае занимают пониженные части пласта. Отметим некоторые физические свойства воды.
Плотность () – масса единицы объема воды, зависит от минерализации, т.е. количества растворимых солей.
Температура (Т) – определяется в соответствии с геотермической ступенью данной местности и глубиной залегания пластовой воды.
Электропроводность () – зависит от минерализации.
Вязкость воды () значительно меньше, чем у нефти, поэтому она обладает большей подвижностью.
Поверхностное натяжение () – также ниже, чем у нефти, поэтому она обладает большей способностью промывать пески и вытеснять из пласта нефть.
Растворимость газов () в воде значительно ниже, чем у нефти.
Пластовые воды являются одним из основных энергетических источников фильтрационных процессов на месторождениях УВ. В рамках промысловой классификации они подразделяются на грунтовые (безнапорные), пластовые напорные и воды тектонических трещин. Грунтовые воды залегают на сравнительно небольшой глубине от поверхности, и их режим зависит в основном от гидрометеорологических условий.
Пластовые
напорные воды по отношению их залегания
к нефтяному пласту подразделяются на:
нижние краевые (контурные),; подошвенные,
промежуточные, верхние и нижние,. Краевые
воды залегают в пониженных частях
нефтеносного пласта и подпирают нефтяную
залежь. Подошвенные залегают в подошвенной
части нефтяного пласта в пределах всей
структуры. Промежуточные воды находятся
внутри нефтяного пласта. Верхние и
нижние, приурочены к чисто водяным
пластам и залегают соответственно выше
и нефтяного пласта (рис. 4.4).
Наиболее типичным является строение месторождения, когда залежь подпирается нижними краевыми водами. В этом случае выделяют внешний водонефтяной контакт (1), приконтурную зону (4), внутренний водонефтяной контакт (2) и нефтяную зону (3) (рис.4.5).
Рис.4.4
В приконтурной зоне часть пласта содержит нефть, а другая часть воду. В нефтяной зоне весь пласт нефтяной. В процессе добычи нефти происходит равномерное продвижение (сжатие) контура нефтеносности. При неравномерном продвижении контура могут появиться «языки» обводнения, приводящие к появлению разрозненных целиков нефти, которые трудно извлечь (рис.4.5).
4
Рис. 4.5
Неравномерность продвижения зависит от неоднородности пласта и темпа отбора нефти. При наличии месторождения с подошвенными водами целики образуются за счет конусов заводнения, если скважины вскрывают подошвенную воду (рис. 4.6).
Рис. 4.6
Борьба с конусами заводнения ведется путем цементирования участков затрубного пространства скважин в зоне подошвенных вод.
