Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций по ПГ_сборка_ред.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.57 Mб
Скачать

4.2.Прямолинейно-параллельный фильтрационный поток идеального газа

Предварительно найдем функцию Лейбензона для идеального газа, используя уравнение состояния

,

где: - функция состояния  =  (Р).

Для нахождения фильтрационных характеристик газового потока используем метод аналогий параметров между потоком несжимаемой жидкости и течением сжимаемого газа.

Находим распределение давления в потоке идеального газа:

.

Подставляя в последнюю формулу значение функции Лейбензона получим:

.

Отсюда находим изменение давления в пласте:

.

Находим градиент давления по такой же схеме:

,

подставляем сюда функции и , а также производную функции

,

получим:

, откуда .

К

ак видно, в отличие от несжимаемого флюида изменение давления в плоскопараллельном потоке подчиняется нелинейной зависимости, а gradP не остается постоянным и возрастает при приближении к галерее. Распределение давления и его градиента в потоке показаны на рис. 19.1.

Рис. 19.1

Объемный расход газа находим из формулы массового дебита, где вместо Р фигурирует функция Лейбензона :

Таким образом, дебит газа зависит от давления (а значит от координаты x).

Скорость фильтрации газа получим. разделив объемный дебит на площадь сечения пласта:

.

Значит, график скорости фильтрации аналогичен графику градиента. Физически возрастание скорости в фильтрационном потоке объясняется расширением газа при снижении давления.

Средневзвешенное давление газа в пласте определим прямым расчетом:

; ; ,

интегрируем по переменной x от радиуса скважины до контура Lк , получим:

.

4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.

Характеристики потока в такой модели найдем по методу аналогий, зная характеристики подобного потока несжимаемой жидкости и выражение функции Лейбензона.

Распределение пластового давления газа в модели.

.

Подставляя значения функции Лейбензона , получим

,

откуда .

На рисунке 19.2 видно, что в газовом потоке по сравнению с жид-костным, воронка депрессии охватывает меньшую область возмущения, но характеризуется более высокими градиентами давления вблизи скважины.

Градиент давления в пласте

;

; и ;

т.о., градиент давления вблизи скважины резко возрастает как за счет уменьшения координаты r, также и падения давления Р.

Дебит газовой скважины получим из формулы Дюпюи, подставляя вместо объемного дебита (Q) массовый (Qm,), а вместо давления (P) функцию Лейбензона ():

или объемный дебит будет:

, где: .

Имея ввиду неразрывность массового потока , объемный дебит, измеряемый на устье скважины при атмосферном давлении, будет:

И ндикаторная диаграмма газа в координатах  имеет вид прямой линии (рис. 19.3). Скорость фильтрации получим, разделив дебит на площадь сечения потока фильтрации (S = 2rh)

,

Комментарий к скорости фильтрации тот же, что и к градиенту давления. Средневзвешенное по объему порового пространства пластовое давление

где: ; ;

, подставляя и интегрируя, получим:

Расчеты показывают, что значение при различных (Рk, Рc, Rk и rc) близко к контурному . Физически это объясняется локальным характером и значительной крутизной воронки депрессии при притоке газа к скважине. Средневзвешенное используется при определении запасов газа в пласте, а также для приближенного расчета гидродинамических характеристик; замена его контурным давлением значительно упрощает расчеты.