- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
До сих пор мы рассматривали фильтрацию несжимаемого флюида =const (без учета уравнения состояния флюидов, т.к. характеристики k, и m считали постоянными). Эти допущения приводили к простому дифференциальному уравнению фильтрации
Р = 0 и Ф = 0.
Если флюид сжимаем, нужно получить новое дифференциальное уравнение для упругого (сжимаемого) флюида из уравнения неразрывности потока:
и уравнения движения:
,
.
Введем функцию так, что ее дифференциал
или
.
Функция называется функцией Л.С. Лейбензона. Т.к. = (х, у, z, t) и Р = Р(х, у, z, t) дифференциал можно переписать
,
где:
.
Переходя от объемных скоростей () к массовым скоростям ()
,
и подставляя их в уравнение неразрывности, получим дифференциальное уравнение фильтрации упругого флюида в однородной пористой среде по закону Дарси
.
В случае установившейся фильтрации
и
= 0.
Таким образом, для установившейся фильтрации движения упругого флюида в однородной среде по закону Дарси справедливо уравнение Лапласа, но уже не относительно давления (Р) или потенциала (Ф), а относительно функции Лейбензона .
Введение функции Лейбензона в уравнения позволяет установить полную аналогию между установившейся фильтрацией несжимаемого флюида, для которого законы фильтрации нами были уже рассмотрены, и фильтрацией сжимаемого флюида.
В дальнейшем изложении будем считать, что и k постоянны. Тогда выражение функции Лейбензона упростится:
и
.
Аналогия заключается в том, что все формулы, полученные для установившейся фильтрации несжимаемого флюида по закону Дарси можно использовать и для установившейся фильтрации сжимаемого флюида в пластах той же геометрии и при тех же граничных условиях, заменив переменные:
Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
Д
авление
Р
О
бменный
расход флюида
объемная скорость фильтрации
Установившаяся фильтрация упругой жидкости.
Найдем выражение функции Лейбензона для упругой, но слабо сжимаемой жидкости, описываемой уравнениями состояния
.
Для
случая, когда ж
(Р - Р0)
мало
0Р
+ С и уравнение фильтрации приводится
к виду:
.
Т.е. при установившейся фильтрации упругой (слабосжимаемой) жидкости она в большинстве случаев ведет себя как несжимаемая и можно воспользоваться всеми ранее выведенными формулами. В этом случае метод аналогии параметров применять не надо. Однако, при фильтрации жидкости в пласте с очень высоким пластовым давлением и при большой депрессии надо учитывать ее упругие свойства и рассчитывать функцию Лейбензона и применять метод аналогии.
Рассмотрим применение метода аналогии на конкретных примерах фильтрации упругого газа.
Установившаяся фильтрация газового потока.
В отличие от жидкости газ значительно более сжимаем и на практике функцию Лейбензона и метод аналогий параметров в основном применяют к газовым потокам.
Рассмотрим методику применения на простых моделях фильтрации.
