- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
На примере притока жидкости к нескольким рядам (плоскопараллельный поток) или кольцеобразным батареям скважин (плоскорадиальный поток) ознакомимся с широко применяемым на практике при проектировании разработки месторождений методом эквивалентных фильтрационных сопротивлений. Метод предложен Ю.А. Борисовым и основан на аналогии движения жидкости в пористой среде и электрического тока в проводниках.
Рис. 16.2
М
Задача решается методом зеркального отображения цепочек скважин относительно прямолинейного контура питания. Расчеты показывают, что до половины расстояния от контура до цепочки движение жидкости плоскопараллельное (здесь падение потенциала пропорциональное и незначительное), а вблизи скважин–плоскорадиальное (здесь основное падение потенциала) (рис. 16.2 и 16.3).
одель (L, Фк, Фс) – цепочка скважин на расстоянии 2 друг от друга и на расстоянии L от прямолинейного контура питания (рис16.2).Рис. 16.3
При этом удельный дебит каждой скважины по методу отображения равен:
,
Рис. 16.3
где:
,
при L >
,
величина
очевидно
малая и
,
,
где:
- внешнее фильтрационное сопротивление;
а
- внутреннее фильтрационное сопротивление.
Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
где: q J; (Фk Фc) Uk Uc.
Суммарный дебит всей прямолинейной цепочки из n скважин:
,
где: 2n = В – длина цепочки скважин.
Аналогично суммарный
дебит круговой батареи из n
скважин определяется выражением
,
где: Rk-радиус
контура питания; R-радиус
круговой батареи; -
половина расстояния между скважинами
на контуре.
Введем
аналогию между гидродинамическими
характеристиками фильтрационного
потока и характеристиками электрического
тока: Q1/
I;
(Pk-Pc)U;
внешнее фильтрационное сопротивление
и
внутреннее фильтрационное сопротивление.
Тогда электрогидравлическая схема для одной цепочки (батареи) скважин будет иметь вид (рис. 16.4):
Сопротивление
представляет гидравлическое
сопротивление потоку жидкости шириной
В на пути L
от контура питания до галереи, а /
- отражает сопротивление потоку при
подходе непосредственно к скважинам
в зоне
Рис. 16.4
Пусть
теперь в полубесконечном пласте с
прямолинейным контуром питания работают
три параллельных цепочки добывающих
скважин с числом n1,
n2,
n3
соответственно. Скважины в каждой
цепочке имеют одинаковые радиусы
и забойные давления РС1,
РС2,
РС3,
а суммарные дебиты цепочек равны,
соответственно Q1/,
Q2/,
Q3/.
Электрогидравлическая схема будет состоять из трех цепочек фильтрационных сопротивлений и будет выглядеть (рис. 16.5):
Рис. 16.5
Расчет схемы производится аналогично расчету разветвленных электрических цепей по законам Ома и Кирхгофа. Составляются алгебраические линейные уравнения по числу неизвестных: дебитов Q1/, Q2/, Q3/ (токов), если известны забойные давления (потенциалы), или наоборот.
Внешние сопротивления рассчитываются по формуле
,
где:
Li
– расстояние от контура питания до i-й
цепочки.
Внутренние сопротивления будут
,
i = 1, 2, 3….
Отметим, что приток жидкости к трем кольцевым батареям скважин с круговым контуром питания рассчитывается по такой же схеме электрических сопротивлений; при этом сохраняются и формулы расчета внутренних фильтрационных сопротивлений, а внешние сопротивления рассчитываются по формуле
,
i = 1, 2, 3…..
При расчете фильтрационных сопротивлений следует учитывать, что номера прямолинейных или кольцевых батарей отсчитываются от контура питания. Контур питания первой батареи совпадает с истинным контуром, а каждой последующей, совпадает с положением линии предыдущей батареи (рис. 16.6).
Расстояния Li для расчета внешних фильтрационных сопротивлений плоскорадиального потока показаны на рисунке 16.6-а, а для расчета ана-
Рис. 16.6
логичных
сопротивлений круговых батарей
соотношение
будет следующим: для первой батареи
,
для второй
,
для третьей
и т.д.
