- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
,
где: q – действительный сток; -q – фиктивный источник.
Потенциал на контуре получим, полагая r1 = r2:
Фk = С = const.
Постоянство потенциала свидетельствует о корректности применяемого метода. Для вычисления дебита скважины найдем ее забойный потенциал, переместив точку М на забой скважины, т.е. положив r1 = rс и r2 = 2a:
,
отсюда
.
Формула совпала с формулой Дюпюи при условии Rк = 2а.
В реальных условиях форма контура питания неизвестна, но вероятней всего она располагается между окружностью радиуса а и прямой, которой соответствует Rк =2а (рис. 15.7).
Рис. 15.7
Поэтому удельный дебит q определяется из неравенства:
.
Найдем теперь гидродинамическое поле точечного источника возле прямолинейного контура как совокупность эквипотенциалей и линий тока.
Уравнение
линии равного потенциала можно поучить
из выражения потенциала в любой точке
М (х, у) пласта
.
Положив этот
потенциал постоянной величине и
представив радиусы-векторы r1
и r2 в координатой
форме, найдем уравнение линии равного
потенциала, проходящей через точку М:
.
Это уравнение можно преобразовать к уравнению семейства окружностей с центрами, лежащими на оси x:
.
Аналогично можно показать, что семейство линий тока также будет представлять окружности, но с центрами на оси у. Окружности будут перпендикулярными к эквипотенциалям и проходить через сток и фиктивный источник (рис.15.8).
Рис. 15.8.
3.8.4. Приток жидкости к скважине, расположенной вблизи непроницаемой прямолинейной границы.
Такой модели соответствует
геологическая ситуация, когда добывающая
скважина расположена возле сброса или
границы выклинивания продуктивного
пласта. С помощью метода отображения
стоков и источников скважину-сток
зеркально отображают относительно
непроницаемой границы, в скважину-сток
такого же дебита и знака (рис. 15.9).
Справедливость такого отображения
подтверждается тем, что вектор скорости
фильтрации при r1 =
r2 будет направлен
вдоль границы. Это означает, что граница
является линией тока и фильтрация через
нее отсутствует. Дебит скважины в такой
модели можно определить из систем 2-х
уравнений для модели с удаленным
контуром питания:
,
где: 2а = r12, отсюда
.
Лекция №16
3.8.5. Приток жидкости к скважине, эксцентрично расположенной в круговом пласте.
Пусть в плоском пласте мощностью h с круговым контуром питания радиуса Rк, на контуре которого поддерживается постоянный потенциал Фk, на расстоянии от центра в т. A расположена скважина-сток, с забойным потенциалом Фс. Требуется определить дебит скважины и потенциал ФM (х, у) в любой точке пласта M (рис. 16.1).
Рис.
16.1
Воспользуемся методом отображения стока в круге радиусом Rk. В этом случае отображением стока +q в т. A будет источник –q в т. A*, расположенной на продолжении ОА на расстоянии «а» от т. А. Найдем это расстояние из условия постоянства Фk на круге, в частности в 2-х его точках М1 и М2:
;
;
;
.
Для того, чтобы определить дебит скважины в т. А запишем выражение ее забойного потенциала:
.
Чтобы избавиться от константы вычтем полученное выражение забойного потенциала из выражения контурного потенциала в т. M1:
.
Подставляя сюда значение а, получим:
,
при = 0 формула переходит в формулу Дюпюи. Выражение потенциала в любой точке М:
.
Вычитая из этого выражения уравнение ФМ1=Фk и учитывая выражение для «а», получим:
