Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций по ПГ_сборка_ред.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.57 Mб
Скачать

3.8. Интерференция скважин. Лекция № 15

3.8.1 Общие положения

Я вление интерференции (взаимодействия) скважин заключается в том, что под влиянием пуска, останова или изменения режима работы одной группы скважин, изменяются дебиты и забойные давления других групп скважин, эксплуатирующих этот же пласт. Именно из-за интерференции суммарный дебит нефти по мере ввода новых скважин растет медленнее, чем их число (рис. 15.1).

Введем некоторые новые понятия:

 точечный сток – точка на плоскости пласта, поглощающая жидкость; сток можно рассматривать как гидравлически совершенную скважину бесконечно малого радиуса в пласте единичной мощности (рис. 15.2 (а));

 точечный источник – точка, выделяющая жидкость (модель нагнетательной скважины) (рис. 15.2 (б)).

Найдем потенциал Ф точечного стока на плоскости. Т.к. точечный сток является моделью добывающей скважины и течение вокруг него плоскорадиальное, то скорость фильтрации можно выразить через удельный дебит (дебит скважины на единицу мощности)

,

где:  - скорость фильтрации; Q- объемный дебит; q = Q/h - удельный дебит жидкости.

Связь потенциала скорости фильтрации с вектором скорости

, где: .

Если направление касательной к траектории движения совпадает с направлением скорости фильтрации и градиента давления, тогда:

или ,

но для плоскорадиального течения .

Отсюда и после интегрирования .

Потенциал в точке r = 0 и r =  теряет смысл. Эквипотенциальные линии представляют собой семейство окружностей r = const.

Для точечного источника выражение потенциала аналогичное, но q0.

Найдем теперь потенциал точки стока не в плоскости, а в пространстве. Рассуждения аналогичные, что и для стока на плоскости, но движение вблизи такого рода стока радиально-сферическое, поэтому

, .

Для потенциала точечного источника знак дебита меняется на противоположный.

Модель точечного стока в пространстве будет в дальнейшем использована для решения различных задач притока жидкости к гидравлически совершенным и несовершенным скважинам.

Отметим, что метод стоков и источников находит применение не только для решения задач фильтрации, но также задач теплопроводности, электричества и магнетизма.

Вернемся к вопросам интерференции. Математический смысл метода суперпозиции заключается в том, что если имеется несколько источников фильтрационных потоков от скважин с потенциалами Ф1(x, y, z), Ф2 (x, y, z) … Фn (x, y, z), каждый из которых удовлетворяет уравнению Лапласа Фi = 0, то сумма их - также является его решением. Подбирая сi можно удовлетворить всем граничным условиям.

Гидродинамический смысл метода суперпозиции состоит в том, что давления (потенциалы) в любой точке пласта, вызванные работой каждой скважины (добывающей и нагнетательной) алгебраически суммируется, а вектор суммарной скорости фильтрации частицы жидкости в данной точке находится как геометрическая сумма векторов скоростей, вызванных работой каждой скважины.

Пусть на неограниченной плоскости расположены n стоков, потенциал каждого из них в точке М равен Ф(i)M, где: i = 1,2….n (рис. 15.3).

Каждая из функций потенциалов Ф(i)M удовлетворяет уравнению Лапласа, тогда и суммарный потенциал в точке М

, где ,

также является его решением. Физически это означает, что фильтрационные потоки накладываются друг на друга. В этом и заключается принцип интерференции. Вектор суммарной скорости фильтрации в точке М равен геометрической сумме векторов скоростей (рис. 15.3).

,

где: .

Метод суперпозиции можно использовать не только в пластах, имеющих круговой контур питания, или бесконечно больших пластах, но и имеющих контур питания иной формы или непроницаемую границу. В этом случае для выполнения граничных условий приходится вводить фиктивные точечные стоки и источники. При этом решение задач в таких пластах сводится к учету одновременной работы и реальных и фиктивных источников. Метод называется методом отображения стоков и источников.

Рассмотрим, изложенные здесь принципы суперпозиции, при решении некоторых задачах, имеющих практическое применение в разработке нефтегазовых месторождений.

3.8.2. Приток жидкости к группе скважин в пласте с удаленным контуром питания.

Пусть в горизонтальном пласте толщиной h расположена группа скважин А1, А2… Аn, c радиусами rci, работающая с различными забойными потенциалами Фci:

Рис. 15.4

,

где: - давление на забое скважин.

Так как контур питания достаточно удален от всех скважин, можно приближенно считать, что их расстояния до точек контура одинаковы и равны Rk (рис. 15.4).

Потенциал в любой точке пласта, в том числе на забое любой скважины (Фсi), определяется как сумма потенциалов всех источников:

,

,

………………………………………………………….

.

Система состоит из n уравнений и содержит n+1 неизвестных (n дебитов и постоянную интегрирования с). Дополнительное уравнение получим, поместив точку М на контур питания:

.

Вычитая почленно уравнения системы из последнего уравнения (исключая тем самым с), получим новую систему из n неизвестных относительно qi:

, i = 1, 2 ... n..

Н а основании этих уравнений можно также определить неизвестные потенциалы по известным дебитам.

С

корость фильтрации в любой точке пласта М определяется как геометрическая сумма скоростей фильтрации, вызванных работой каждой скважины (рис.15.5).

; .

Рис. 15.5

3.8.3. Приток жидкости к скважине с прямолинейным контуром питания.

Пусть в полубесконечном пласте на расстоянии a от прямолинейного контура питания с контурным потенциалом Фk, работает в точке А одна добывающая скважина забойным потенциалом Фс. Требуется найти удельный дебит (q), скорость фильтрации ( ) и потенциал (Ф) в любой точке пласта М (рис. 15. 6).

Рис. 15.6

Формула потенциала точечного стока справедлива, если скважина расположена в бесконечном пласте или в центре пласта с круговым контуром питания, когда обеспечено плоскорадиальное течение.

Условие постоянства контурного потенциала Фk здесь не выполняется из-за конечного расстояния до контура питания. Для решения задачи используем рассмотренный метод отображения стоков и источников.

Влияние прямолинейного контура приводит к появлению фиктивного зеркального источника q* в точке А/ на расстоянии a от прямолинейного контура питания.