- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
3.8. Интерференция скважин. Лекция № 15
3.8.1 Общие положения
Я
вление
интерференции (взаимодействия) скважин
заключается в том, что под влиянием
пуска, останова или изменения режима
работы одной группы скважин, изменяются
дебиты и забойные давления других групп
скважин, эксплуатирующих этот же пласт.
Именно из-за интерференции суммарный
дебит нефти по мере ввода новых скважин
растет медленнее, чем их число (рис.
15.1).
Введем некоторые новые понятия:
точечный сток – точка на плоскости пласта, поглощающая жидкость; сток можно рассматривать как гидравлически совершенную скважину бесконечно малого радиуса в пласте единичной мощности (рис. 15.2 (а));
точечный источник – точка, выделяющая жидкость (модель нагнетательной скважины) (рис. 15.2 (б)).
Найдем потенциал Ф точечного стока на плоскости. Т.к. точечный сток является моделью добывающей скважины и течение вокруг него плоскорадиальное, то скорость фильтрации можно выразить через удельный дебит (дебит скважины на единицу мощности)
,
где: - скорость фильтрации; Q- объемный дебит; q = Q/h - удельный дебит жидкости.
Связь потенциала скорости фильтрации с вектором скорости
,
где:
.
Если
направление касательной
к траектории движения совпадает с
направлением скорости фильтрации и
градиента давления, тогда:
или
,
но
для плоскорадиального течения
.
Отсюда
и после интегрирования
.
Потенциал в точке r = 0 и r = теряет смысл. Эквипотенциальные линии представляют собой семейство окружностей r = const.
Для точечного источника выражение потенциала аналогичное, но q0.
Найдем теперь потенциал точки стока не в плоскости, а в пространстве. Рассуждения аналогичные, что и для стока на плоскости, но движение вблизи такого рода стока радиально-сферическое, поэтому
,
.
Для потенциала точечного источника знак дебита меняется на противоположный.
Модель точечного стока в пространстве будет в дальнейшем использована для решения различных задач притока жидкости к гидравлически совершенным и несовершенным скважинам.
Отметим, что метод стоков и источников находит применение не только для решения задач фильтрации, но также задач теплопроводности, электричества и магнетизма.
Вернемся
к вопросам интерференции. Математический
смысл метода суперпозиции заключается
в том, что если имеется несколько
источников фильтрационных потоков от
скважин с потенциалами Ф1(x,
y,
z),
Ф2 (x,
y,
z)
… Фn
(x,
y,
z),
каждый из которых удовлетворяет
уравнению Лапласа Фi
= 0, то сумма
их
-
также является его решением. Подбирая
сi
можно удовлетворить всем граничным
условиям.
Гидродинамический смысл метода суперпозиции состоит в том, что давления (потенциалы) в любой точке пласта, вызванные работой каждой скважины (добывающей и нагнетательной) алгебраически суммируется, а вектор суммарной скорости фильтрации частицы жидкости в данной точке находится как геометрическая сумма векторов скоростей, вызванных работой каждой скважины.
Пусть на неограниченной плоскости расположены n стоков, потенциал каждого из них в точке М равен Ф(i)M, где: i = 1,2….n (рис. 15.3).
Каждая из функций потенциалов Ф(i)M удовлетворяет уравнению Лапласа, тогда и суммарный потенциал в точке М
,
где
,
также является его решением. Физически это означает, что фильтрационные потоки накладываются друг на друга. В этом и заключается принцип интерференции. Вектор суммарной скорости фильтрации в точке М равен геометрической сумме векторов скоростей (рис. 15.3).
,
где:
.
Метод суперпозиции можно использовать не только в пластах, имеющих круговой контур питания, или бесконечно больших пластах, но и имеющих контур питания иной формы или непроницаемую границу. В этом случае для выполнения граничных условий приходится вводить фиктивные точечные стоки и источники. При этом решение задач в таких пластах сводится к учету одновременной работы и реальных и фиктивных источников. Метод называется методом отображения стоков и источников.
Рассмотрим, изложенные здесь принципы суперпозиции, при решении некоторых задачах, имеющих практическое применение в разработке нефтегазовых месторождений.
3.8.2. Приток жидкости к группе скважин в пласте с удаленным контуром питания.
Пусть в горизонтальном пласте толщиной h расположена группа скважин А1, А2… Аn, c радиусами rci, работающая с различными забойными потенциалами Фci:
Рис. 15.4
,где:
- давление на забое скважин.
Так как контур питания достаточно удален от всех скважин, можно приближенно считать, что их расстояния до точек контура одинаковы и равны Rk (рис. 15.4).
Потенциал в любой точке пласта, в том числе на забое любой скважины (Фсi), определяется как сумма потенциалов всех источников:
,
,
………………………………………………………….
.
Система состоит из n уравнений и содержит n+1 неизвестных (n дебитов и постоянную интегрирования с). Дополнительное уравнение получим, поместив точку М на контур питания:
.
Вычитая почленно уравнения системы из последнего уравнения (исключая тем самым с), получим новую систему из n неизвестных относительно qi:
,
i
= 1, 2 ... n..
Н
а
основании этих уравнений можно также
определить неизвестные потенциалы по
известным дебитам.
С
корость фильтрации в любой точке пласта М определяется как геометрическая сумма скоростей фильтрации, вызванных работой каждой скважины (рис.15.5).
;
.
Рис. 15.5
3.8.3. Приток жидкости к скважине с прямолинейным контуром питания.
Пусть в полубесконечном пласте на расстоянии a от прямолинейного контура питания с контурным потенциалом Фk, работает в точке А одна добывающая скважина забойным потенциалом Фс. Требуется найти удельный дебит (q), скорость фильтрации ( ) и потенциал (Ф) в любой точке пласта М (рис. 15. 6).
Рис. 15.6
Формула
потенциала точечного стока
справедлива, если скважина расположена
в бесконечном пласте или в центре пласта
с круговым контуром питания, когда
обеспечено плоскорадиальное течение.
Условие постоянства контурного потенциала Фk здесь не выполняется из-за конечного расстояния до контура питания. Для решения задачи используем рассмотренный метод отображения стоков и источников.
Влияние прямолинейного контура приводит к появлению фиктивного зеркального источника – q* в точке А/ на расстоянии a от прямолинейного контура питания.
