Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций по ПГ_сборка_ред.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.57 Mб
Скачать

3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14

3.7.1 Общие замечания.

В реальных условиях пористая среда редко бывает однородной. Неоднородной называется среда, у которой ее фильтрационные характеристики – пористость и проницаемость различны в различных точках. Однако часто даже в неоднородных пластах могут быть применены рассмотренные выше решения фильтрационных потоков, если эта неоднородность хаотичная (случайная). Тогда большие области пласта на макро уровне можно считать в среднем однородными. Но есть макро неоднородные пласты, в которых отдельные участки существенно различаются по фильтрационным характеристикам. В пластах-коллекторах нефти и газа выделяют следующие основные виды неоднородности.

1. Слоистая неоднородность. Фильтрационные характеристики в пределах слоев постоянны, а между собой различаются. При этом на границе пластов рассматривают два случая: слои гидравлически изолированы (границы непроницаемы) и между слоями существуют перетоки жидкости. Это случаи вертикальной неоднородности.

2. Зональная неоднородность, при которой пласт по площади распространения состоит из нескольких зон различной проницаемости. Это случай латеральной неоднородности.

3. Неоднородность, у которой проницаемость описывается непрерывной функцией от координат точек пространства k (x,y,z).

Рассмотрим одномерные потоки несжимаемой жидкости, подчиняющиеся закону Дарси в таких неоднородных пластах.

а) Слоистая неоднородность.

3.7.2 Прямолинейно-параллельный поток.

Горизонтальный пласт постоянной толщиной h и шириной В состоит из n пропластков с толщинами h1, h2…hn, проницаемостью k1, k2…kn и пористостью m1, m2…mn. На контуре давление - Рк; в скважинах - Рr (рис.14.1).

Рис. 14.1. Разрез (а) и план пласта (б)

При отсутствии перетоков жидкости между пропластками распределение давления по координате х не будет зависеть от параметров среды и во всех пропластках будет одинаково. Оно будет аналогичным распределению давления в однородном пласте.

.

Скорость фильтрации в каждом i-м пропластке будет индивидуальной, т.к. зависит от проницаемости:

, i = 1, 2 …n.

Дебит потока Q можно вычислить как сумму дебитов в отдельных пропластках Qi:

.

Движение частиц жидкости в каждом пропластке будет плоскопараллельным, но уравнения движения разные, из-за неодинаковой скорости фильрации

.

Для гидродинамических расчетов иногда бывает удобным заменить пласт со слоистой неоднородностью однородным пластом (h, B, Lk) со средневзвешенной проницаемостью, определенной на основе равенства дебитов.

.

б) Зональная неоднородность.

Рис. 14.2

Горизонтальный пласт (h, B, Lk, Рк, Рr) состоит из n зон: (k1, m1, l1), (k2, m2, l2), (ki, mi, li)…(kn, mn, ln); где: ki – проницаемость, mi – пористость, li – длина i-й зоны. Характеристики такого потока в пределах каждой однородной зоны будут рассчитываться по формулам

однородного пласта. Распределение давления в каждой зоне будет подчиняться линейному закону, где роль контурных давлений будет играть давления на границах соседних зон (рис. 14.2).

, li - 1 x  li,

где: Р(i) (х) – распределение давления в i-й зоне, Рi-1 и Рi – давления на границах зон, играющие роль контурного и забойного давления в скважинах галереи соответственно.

Градиент давления в каждой зоне постоянный, но различный в разных зонах

.

Дебит вследствие неразрывности потока несжимаемой жидкости будет постоянным в любом сечении потока (любой зоне).

Применяя к потоку в i-й зоне свойства пропорций, получим выражение дебита через обобщенные характеристики пласта и граничные значения давлений

.

Скорость потока также постоянна в любом сечении

=const.

При этом надо иметь в виду, что истинные скорости движения частиц будут меньше в зонах с большей пористостью и наоборот.

Среднее значение проницаемости k ср такого неоднородного пласта определяется из равенства дебитов зонально - неоднородного и эквивалентного ему однородного пласта с проницаемостью k ср

.

Отсюда

.

Давление pi на границе раздела сред с различной проницаемостью, входящие в формулу р(х), определим из условия равенства скоростей фильтрации в этих зонах:

.

Например, если неоднородный пласт состоит из двух зон, как это часто бывает на практике, то

,

отсюда .

Теперь подставляя это решение в выражения распределения давления в зонах Р(1)(х) и Р(2)(х), найдем их выражения:

, 0  х  l1,

, l1  x  Lk.

Если установившееся прямолинейное движение несжимаемой жидкости происходит в пласте, где проницаемость меняется непрерывно и задана функцией к = к (х), тогда дебит такого потока

.

Разделяя переменные и интегрируя, получим

.

3.7.3. Плоскорадиальный поток.

а) Слоистая неоднородность.

Установившийся плоскорадиальный поток несжимаемой жидкости по закону Дарси направлен к гидравлически совершенной скважине радиуса rс, в слоисто-неоднородном пласте, состоящем из n пропластков с разными коллекторскими свойствами и толщинами (ki, mi, hi). При этом на контуре питания поддерживается давление Рк, а на забое скважины – Рc.

Во всех пропластках распределение давления по цилиндрической координате r будет таким же как и для однородного пласта и подчиняться логарифмическому закону, поскольку граничные давления (Рк, Рс) в них одинаковы (рис. 14.3):

.