- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
Лекция № 11
3.5.2 Плоскорадиальный фильтрационный поток.
Будем считать, что несжимаемая жидкость притекает к гидродинамической совершенной скважине радиусом rc, расположенной в центре однородного горизонтального кругового пласта, толщиной h. На внешней круговой границе пласта радиусом Rk, служащей контуром питания, поддерживается постоянное давление Pk, на забое скважины давление Рс тоже постоянно. Дифференциальное уравнение Лапласа в случае плоскорадиального фильтрационного потока имеет вид
.
Удобно перейти и решить задачу в цилиндрической системе координат (r,,z) (рис. 11.1).
Рис. 11.1 Связь координат декартовой и цилиндрической систем:
x = r cos
y = r sin
z = z
Рис. 11.2.
Уравнение Лапласа в криволинейной системе ( цилиндрической) системе координат:
где: H r, H , H z – коэффициенты Ляме.
Линии тока жидкости для данной фильтрационной модели совпадают с радиусами окружности (рис. 11.2). Поэтому в уравнении Лапласа останется одно слагаемое, зависимое от координаты r, и после подстановки в него значений коэффициентов Ляме примет вид:
.
Это и есть дифференциальное уравнение Лапласа в цилиндрических координатах для установившегося плоскорадиального течения несжимаемой жидкости по закону Дарси.
Дважды проинтегрировав дифференциальное уравнение, получаем
.
Постоянные интегрирования С1, С2 находим как обычно из граничных условий Р = Рc при r = rc; Р = Рк при r = Rk.
Подставляя граничные условия, получаем систему уравнений для нахождения С1, С2:
.
Подставляя найденные значения С1 и С2 в решение, получим зависимость давления от координаты r в плоскорадиальном потоке.
.
Находим градиент давления
и используем его для нахождения скорости фильтрации
и дебита
,
где: S = 2rh – поверхность фильтрации (боковая поверхность цилиндра радиуса r и высотой h) (рис. 11.3).
Формула
- называется формулой Дюпюи.
Находим закон движения частиц из связи
;
.
Подставляя сюда значение и интегрируя от 0 до t и от R0 до переменного r получим:
Рис. 11.3.
где: R0 – начальное положение частицы в момент t = 0 и r – текущее положение в момент t.
Если в эту формулу подставить вместо R0 Rк , а вместо r rc, то получим время Т отбора всей жидкости, находящейся в пласте
.
Находим средневзвешенное по объему порового пространства пластовое давление
Прокомментируем некоторые результаты.
Дебит скважины пропорционален депрессии Р (разнице давлений в пласте и на забое работающей скважины) и одинаков через любую цилиндрическую поверхность, соосную со скважиной т.е. не зависит от r.
Отношение объемного дебита скважины к Р называется коэффициентом продуктивности
;
.Через этот коэффициент дебит скважины выражается уравнением
Q=KпрP , которое называется индикаторной диаграммой. На ней коэффициент продуктивности определяется как тангенс угла наклона прямой к оси P (tg Kпр). На практике индикаторную диаграмму строят по данным испытания скважины, путем получения притоков нефти при различных депрессиях.
Рис. 11.5 График зависимости скорости и градиента давления от расстояния до скважины.
Градиент давления и скорости фильтрации ведут себя одинаково и резко возрастают при приближении к скважине (рис. 11.5).
Логарифмическая кривая давления, вращение которой вокруг скважины образует поверхность, называется воронкой депрессии. Основная часть депрессии образуется в призабойной зоне, параметры которой сильно влияют на дебит скважины (рис. 11.6).
б)
Рис. 11.6 Воронка дисперсии (а) и гидродинамическое поле (б)
Гидродинамическое
поле плоскорадиального потока описывается
семействами изобар и линий тока. Изобара
представляет окружности, поскольку, Р
=
const
уравнение окружности. Линии тока –
прямые, совпадающие с радиусами. Все
выведенные формулы с заменой (Рк
– Рс)
на (Рс –
Рк)
справедливы для нагнетательных скважин.
3.5.3 Радиально-сферический фильтрационный поток
