- •Кафедра “Геофизические методы поисков и разведки мпи”
- •Якутск 2014
- •Оглавление
- •Предмет курса
- •Раздел 1. Свойства и характеристики горной среды и флюидов в подземных условиях
- •1.2. Физико-химические свойства углеводородного газа
- •1.3. Физико-химические свойства нефти и воды
- •1.4. Энергетические свойства нефтегазоносных пластов
- •Раздел 2. Закон Дарси в задачах подземной гидравлики
- •2.1. Общие положения
- •2.2. Границы применимости закона Дарси
- •2.3.Закон Дарси для двухфазного течения несмешивающихся жидкостей
- •2.4. Понятие о режимах нефтегазоводоносных пластов
- •Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
- •3.1 . Дифференциальные уравнения фильтрации флюидов
- •Тогда поток через правую грань
- •3.2 Дифференциальные уравнения движения
- •3.3. Уравнения состояния флюидов и параметров пористой среды
- •3.5 Одномерные фильтрационные потоки несжимаемой жидкости в однородном пласте
- •Лекция № 11
- •Лекция № 12
- •Для рассматриваемой модели линии тока жидкости совпадают с радиусами полусферы, поэтому частные производные по координатам и равны 0 и уравнение Лапласа будет иметь вид:
- •3.6. Одномерные фильтрационные потоки несжимаемой жидкости при нелинейных законах фильтрации
- •3.7. Фильтрационные течения несжимаемой жидкости в неоднородных пластах Лекция № 14
- •Градиент давления также одинаков:
- •3.8. Интерференция скважин. Лекция № 15
- •Потенциал в любой точке м пласта определяется как сумма потенциалов от двух источников:
- •Поэтому удельный дебит q определяется из неравенства:
- •Лекция №16
- •3.9. Метод электрогидравлических аналогий метод эквивалентных фильтрационных сопротивлений.
- •При этом удельный дебит каждой скважины по методу отображения равен:
- •Введение фильтрационных сопротивлений и / позволяет записать удельный дебит в форме аналогичной закону Ома: ,
- •3.10. Приток жидкости к несовершенным скважинам. Лекция № 17
- •3.11. Решение плоских задач фильтрации методом теории комплексного переменного Лекция №18
- •Раздел 4. Установившееся движение упругой жидкости и газа в пористой среде
- •4.1. Дифференциальное уравнение установившейся фильтрации упругой жидкости и газа по закону Дарси Лекция № 19
- •Н Упругий флюид Функция Лейбензона Массовый расход флюида массовая скорость фильтрации есжимаемый флюид
- •4.2.Прямолинейно-параллельный фильтрационный поток идеального газа
- •4.3. Плоскорадиальный фильтрационный поток идеального газа по закону Дарси.
- •4.4. Плоскорадиальный фильтрационный поток идеального газа по двухчленному закону фильтрации.
- •4.5. Плоскорадиальный фильтрационный поток реального газа по закону Дарси.
- •4.6. Фильтрационный поток реального газа по двухчленному закону фильтрации к несовершенной скважине.
- •Раздел 5. Основы моделирования процессов фильтрации нефти, газа и воды
- •2.2 Виды моделирования процессов фильтрации пластовых флюидов
- •2.3. Основы анализа размерностей и теории подобия
- •2.4. Применение методов теории размерностей в подземной гидравлике
- •Раздел 6. Задачи для самостоятельной работы студентов (срс) Параметры пористой среды и флюида. Закон Дарси (к разделу1)
- •Пределы применимости закона Дарси. Нелинейные законы фильтрации (к разделу 2)
- •Установившаяся плоская фильтрация. Интерференция скважин. Связь плоской задачи теории фильтрации с теорией функции комплексной переменной (к разделу 3)
- •Влияние гидродинамического несовершенства скважин на их дебит (к разделу 3)
- •Движение жидкости в пласте с неоднородной проницаемостью (к разделу 3)
- •Установившаяся фильтрация сжимаемой жидкости и газа (к разделу 4)
- •Литература
Раздел 3. Установившаяся фильтрация несжимаемой жидкости в нефтегазоносных пластах
3.1 . Дифференциальные уравнения фильтрации флюидов
Лекция № 8
1. Закон Дарси, связывающий давление флюида и скорость фильтрации получен экспериментальным путем на лабораторной установке с известными геометрическими размерами (L, S) и постоянными характеристиками пористой среды, для однородного течения жидкости при постоянном расходе флюида.
В реальных условиях исчезает понятие о геометрических размерах пористой среды (ввиду масштабности), ее характеристики изменяются от точки к точке и во времени, т.е. мы имеем дело с полем давлений и скоростей. Характеристики этого поля получают на основании решения дифференциального уравнения в частных производных, используя при этом так называемые начальные и граничные условия.
Чтобы вывести дифференциальное уравнение фильтрации в пористой среде, заключающей движущийся флюид, вначале составляется система уравнений, в которой на основе соответствующих физических законов рассматриваются в бесконечно малом элементарном объеме изменение его массы и энергии, а также результаты экспериментального изучения поведения флюидов и свойств пористой среды. Число уравнений в системе (дифференциальных и конечно-разностных) должно равняться числу неизвестных функций, характеризующих процесс и подлежащих определению. Такая система уравнений называется замкнутой.
В число дифференциальных уравнений обязательно входят: уравнение баланса массы, уравнение неразрывности, уравнение движения и уравнения состояния параметров пористой среды и насыщающих ее флюидов.
В результате интегрирования (решения) дифференциальных уравнений получают, прежде всего, распределение давления и скорости фильтрации по всему пласту в любой момент времени.
Р = P(x, y, z, t);
.
Для случая несжимаемого флюида (=const) и постоянных параметров пористой среды (k, m=const) – это и будет решением. А в случае сжимаемых сред и флюидов нужно дополнительно определять , m, и k как функции координат пространства и времени.
Аналитическое (в виде формул) решение системы дифференциальных уравнений удается получать в ограниченном числе простейших случаев. В более сложных случаях системы уравнений решаются численными методами на ЭВМ. Вместе с тем знание аналитических решений для простых случаев (гидродинамических моделей) имеет большое значение, как для понимания законов гидродинамики так и потому, что сложные модели при определенных условиях сводятся к простым.
2. Вывод уравнения неразрывности.
Для однородного сжимаемого флюида и деформируемой среды уравнение неразрывности получается из уравнения баланса массы в элементарном объеме пористой среды.
Рис. 8.1
Найдем поток жидкости (массовый) через левую грань за время t (точка М в центре грани).
N1=(x)abdydzdt.
Тогда поток через правую грань
N2
=
(x)a/b/dy
dz dt=
;
изменение массы потока (разница между входным и выходным потоками):
Аналогично изменение массы флюида через переднюю и заднюю грани за время dt:
и верхнюю и нижнюю грани:
.
.
Тогда общее изменение массы потока при прохождении куба
.
С другой стороны, масса флюида, находящаяся в элементарном объеме
М = m dx dy dz,
где m – пористость, а изменение этой массы со временем
.
Приравнивая
выражения изменения массы
,
получим:
,
или
.
Отметим, что это уравнение справедливо, если в элементарном объеме нет ни стоков ни источников в т. ч. за счет химических реакций, фазовых превращений и т.д.
