- •Печатается по решению методического совета вуза
- •Оглавление
- •5.2 Расчет простейших ферм на неподвижную нагрузку……………………..30
- •6.1 Аналитический расчет трехшарнирной арки……………...……………....39
- •8.2 Определение перемещений в стержневых системах методом Мора..….67
- •9 Список рекомендуемой литературы…...……………………….………………76
- •1 Задачи курса строительная механика
- •2 Кинематический анализ сооружений
- •2.1 Понятие о геометрической неизменяемости
- •2.2 Степень свободы кинематической цепи, составленной из дисков
- •2,3 Степень свободы шарнирно-стержневой плоской системы
- •2.4 Принципы образования геометрически неизменяемых
- •3 Общая теории линий влияния
- •3.1 Понятие о линиях влияния
- •3. 2 Построение линий влияния в простой балке
- •3.3 Линии влияния для консольной балки
- •Построение линий влияния при узловой передаче нагрузки.
- •3.5 Кинематический метод построения линий влияния
- •4 Статически определимые многопролетные балки.
- •5. Статически определимые фермы
- •5.1 Классификация ферм
- •5. 2 Расчет простейших ферм на неподвижную нагрузку
- •Из уравнения равновесия
- •5.3 Расчет ферм на подвижную нагрузку
- •6 Трехшарнирные арки (распорные системы)
- •6.1 Аналитический расчет трехшарнирной арки
- •6.2 Расчет арок на подвижную нагрузку
- •6.2.1 Линии влияния опорных реакций
- •6.2.2 Построение линии влияния изгибающего момента
- •6.2.3 Построение линии влияния поперечной силы.
- •6.2.4 Построение линии влияния продольной силы.
- •7. Основные теоремы строительной механики
- •7.1 Понятие о линейно деформируемых системах.
- •7.2 Работа внешних сил.
- •7.3 Работа внутренних сил
- •7.4 Теорема о равенстве возможных работ внешних и внутренних сил.
- •8 Расчет на прочность и жесткость ломаных стержней
- •8.1 Построение эпюр внутренних усилий в раме.
- •8.2 Определение перемещений в стержневых системах методом Мора
- •9 Список рекомендуемой литературы
- •10 Общие указания о порядке выполнения расчетно-графических работ
- •Статически определимая многопролетная балка
- •Расчет простой плоской статически определимой фермы.
- •Методические указания
- •Расчет 3-х шарнирной арки
- •Схемы к контрольной работе по определению перемещений
- •Статически определимые системы в примерах
7.3 Работа внутренних сил
В процессе нагружения упругой системы работу совершают не только внешние, но и внутренние силы, которые развиваются во всех деформируемых элементах. Поскольку в упругой системе не происходит потерь энергии на преодоление трения, выделения тепла и т. п., действительная работа внешних сил A равна и противоположна по знаку действительной работе внутренних сил W, что является выражением закона сохранения энергии:
A + W = 0 или
A = - W. (7.6)
Можно сказать, что работа, произведенная внешними силами, накапливается (аккумулируется) в упругом теле в виде энергии деформаций. Поэтому работа внутренних сил W, взятая с обратным знаком и характеризующая эту энергию, носит название потенциальной энергии деформаций упругой системы U.
U = A = - W. (7.7)
Действительная работа внутренних сил.
Для определения действительной работы внутренних сил (потенциальной энергии деформаций) выделим из заданной системы бесконечно малый элемент длиной dx (рис. 7.10, а) и приложим к нему усилия M, Q N, действующие на него со стороны отброшенных частей системы, и рассмотрим вызванные этими усилиями деформации (рис. 7.10. б).
Действительная работа внутренних усилий элемента, равных по величине и обратных по знаку усилиям M, Q N, составит:
Знак «минус» объясняется здесь тем, что направление внутренних усилий элемента dx противоположно направлению его деформаций, в результате чего работа внутренних сил при загружении упругого тела всегда отрицательна.
Величины деформаций элемента определяются в соответствии с законом Гука по формулам
(7.8)
где E и G – модули упругости материала соответственно 1 –го и 2- го рода, I и A – соответственно момент инерции и площадь поперечного сечения рассматриваемого стержня, - коэффициент, учитывающий форму сечения стержня.
Суммируя элементарные работы по длине стержня, а затем по всем стержням системы, окончательно для работы внутренних сил системы получим:
(7.9)
Анализируя выражение (7.9), можно прийти к заключению, что потенциальная энергия деформации U = - W (см. выражение 7.7) всегда положительна, так как она выражается через квадраты внутренних усилий. По этой причине к вычислению потенциальной энергии неприложим принцип независимости действия сил, т. е. потенциальная энергия, вызванная действием группы сил, не равна сумме потенциальных энергий, вызванных каждой из сил в отдельности. Наконец, можно видеть, что в упругой системе суммарная работа внутренних (а также и внешних) сил определяется лишь конечным состоянием системы и не зависит от того, каким способом она пришла в это состояние (так как от этого не зависят значения M, Q, N).
Возможная работа внутренних сил.
Рассмотрим упругую систему, нагруженную произвольной нагрузкой (рис. 7.11,а). Будем считать такое нагруженное состояние 1-м. На некоторый элементарный участок этой системы dx в общем случае будут действовать внутренние усилия N1, Q1, M1.
Пусть та же упругая система нагружена другой нагрузкой, т. е. находится во 2-м состоянии (рис. 11,б). На тот же элементарный участок будут действовать свои внутренние усилия N2, Q2, M2.
Элементарный участок dх при этом получит от внутренних усилий соответствующие перемещения:
которые для системы в 1-м состоянии будут возможными перемещениями.
Работа сил первого состояния N1, Q1, M1 на возможных перемещениях x2, x2 будет возможной работой внутренних сил, которую можно записать как:
.
(7.10)
Если за исходную принять 1-ю систему, то получим
.
Очевидно, что выполняется теорема Бетти о взаимности возможных работ (7.4).
W21 = W12.
