Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Галлямов.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
74.77 Кб
Скачать

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное

учреждение высшего образования

«Уфимский государственный нефтяной технический университет»

Кафедра «Технологические машины и оборудование»

Реферат

на тему: «Уравнение параболического типа.

Вывод уравнения теплопроводности (одномерный случай)»

Выполнил студ. гр. ММП21з-16-01 А.А. Алимтаев

Проверил доцент, к.т.н. А.А. Галлямов

Уфа 2016

Содержание

Введение ………………………………………………………………………..

3

1 Уравнение параболического типа. Основные уравнения………………….

4

2 Вывод уравнения теплопроводности для одномерного случая……………

5

3 Частные случаи уравнения теплопроводности………………………..........

10

4 Начальные и граничные условия…………………………………………….

11

Список использованных источников………………………………………….

15

Введение

Уравнение диффузии или уравнение теплопроводности представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

Математически уравнение диффузии и уравнение теплопроводности не различаются, и применение того или иного названия ограничено только конкретным приложением, причем второе представляется более частным, так как можно говорить, что в этом случае речь идет о диффузии тепловой энергии.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность

скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

1 Уравнение параболического типа. Основные уравнения

Уравнения параболического типа наиболее часто встречаются при изучении процессов теплопроводности и диффузии. К этим уравнениям приводятся также задачи о движении вязкой жидкости, например, нефти.

Обсудим процесс распространения тепла в неравномерно нагретом твердом теле. Если тело нагрето неравномерно, то в нем происходит передача тепла из мест с более высокой температурой в места с более низкой температурой. Процесс может быть описан функцией u = u (x, y, z, t) дающей температуру u в каждой точке M (x, y, z) тела и в любой момент времени t .

Примем следующую модель процесса: происходит механический перенос тепла от более нагретых частей тела к менее нагретым; все тепло идет на изменение температуры тела; свойства тела от температуры не зависят. Идеализация явления состоит в том, что мы будем изучать процесс, не касаясь его молекулярной природы, а также иных проявлений. Опишем процесс математически для одномерного тела.