Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14-18 вопросы по математике.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
351.37 Кб
Скачать
  1. Дизъюнктивная нормальная форма. Совершенная дизъюнктивная нормальная форма.

Совершенной дизъюнктивной нормальной формой (СДНФ) называется ДНФ, в которой нет одинаковых элементарных конъюнкций и все конъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно, с отрицанием).

Совершенной конъюнктивной нормальной формой (СКНФ) называется КНФ, в которой нет одинаковых элементарных дизъюнкций и все дизъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно, с отрицанием).

Алгоритм получения сднф по таблице истинности.

1. Отметить те строки таблицы истинности, в последнем столбце которых стоят 1:

X

Y

F(X,Y)

0

0

0

0

1

1*

1

0

1*

1

1

0

2. Выписать для каждой отмеченной строки конъюнкцию всех переменных следующим образом: если значение некоторой переменной в данной строке равно 1, то в конъюнкцию включать саму эту переменную, если равно 0, то ее отрицание:  — для 2-й строки;   — для 3-й строки.

3. Все полученные конъюнкции связать в дизъюнкцию:   (1*)

(Алгоритм приведения формулы булевой функции к СДНФ)

Шаг 1. Используя алгоритм построения ДНФ, находим формулу В, являющуюся ДНФ формулы А.

Шаг 2. Вычеркиваем в B все элементарные конъюнкции, в которые одновременно входят какая-нибудь переменная и ее отрицание. Это обосновывается равносильностями:

A&A  0, B&0  0, СV0  С.

Шаг 3. Если в элементарной конъюнкции формулы B некоторая переменная или ее отрицание встречается несколько раз, то оставляем только одно ее вхождение. Это обосновывается законом идемпотентности для конъюнкции: A&A  A.

Шаг 4. Если в элементарную конъюнкцию С формулы В не входит ни переменная x, ни ее отрицание x, то на основании 1- го закона расщепления заменяем С на (С&x) V (C&x).

Шаг 5. В каждой элементарной конъюнкции формулы B переставляем конъюнктивные члены так, чтобы для каждого i (i = 1, ..., n) на i-м месте была либо переменная xi, либо ее отрицание xi.

Шаг 6. Устраняем возможные повторения конъюнктивных членов согласно закону идемпотентности для дизъюнкции: СVС  С.

Алгоритм получения скнф по таблице истинности.

1. Отметить те строки таблицы истинности, в последнем столбце которых стоит 0:

X

Y

F(X,Y)

0

0

0*

0

1

1

1

0

1

1

1

0*

2. Выписать для каждой отмеченной строки дизъюнкцию всех переменных следующим образом: если значение некоторой переменной в данной строке равно 0, то в дизъюнкцию включать саму эту переменную, если равно 1, то ее отрицание: — для 1-й строки;  — для 4-й строки.

3. Все полученные дизъюнкции связать в конъюнкцию:   (2*)

Если мы хотим построить формулу некоторой функции по таблице истинности этой функции, то всегда можно получить СКНФ или СДНФ этой