- •Введение.
- •Лекция 1. Общие сведения.
- •П орядок уравновешивания тела:
- •Определяем равнодействующую для заданной системы сил.
- •Присоединяем к телу такую же (равную равнодействующей) силу, направленную в противоположную сторону и лежащую с ней на одной прямой.
- •Лекция 2. Определение равнодействующей двух сходящихся сил.
- •Пример решения задачи.
- •Лекция 3. Определение равнодействующей нескольких сходящихся сил.
- •Р исунок 8. Проекция вектора на ось.
- •Пример решения задачи.
- •Лекция 4. Определение равнодействующей для параллельных и произвольно расположенных сил.
- •Понятие момента силы относительно точки.
- •Пример решения задачи.
- •Равновесие плоских систем сил.
- •Лекция 5. Равновесие плоской системы сходящихся сил.
- •Пример решения задачи.
- •Лекция 6. Равновесие плоской системы параллельных сил.
- •Пример решения задачи.
- •Лекция 7. Центр тяжести тела.
- •Определение положения центра тяжести плоской фигуры.
- •Определение центра тяжести сложной плоской фигуры.
- •По полученным координатам обозначается на чертеже фигуры её центр тяжести. Примеры решения задачи.
- •Лекция 8. Сопротивление материалов. Общие сведения. Классификация элементов конструкций.
- •Классификация нагрузок.
- •По виду:
- •По характеру:
- •По времени действия:
- •Понятие о деформации.
- •Понятие о прочности, жесткости и устойчивости.
- •Лекция 9. Деформация растяжения-сжатия
- •Лекция 10. Деформации при растяжении-сжатии.
- •Пример решения задачи.
- •Проверочный
- •Проектный
- •Определение допускаемой нагрузки
- •Пример решения задачи
- •Лекция 12. Статические испытания материалов.
- •Пример решения задачи
- •Правило построения эпюры Qy.
- •Правило построения эпюры Mx.
- •Расчеты на прочность при изгибе.
- •Деформация при изгибе.
- •Пример решения задачи.
- •Лекция 00. Общие сведения.
- •Соединения деталей машин.
- •Заклёпочные соединения.
- •Лекция 01. Сварные соединения.
- •Соединение электродуговой сваркой.
- •Лекция 02. Резьбовые соединения.
- •Пример решения задачи.
- •Лекция 03. Шпоночные соединения.
- •Лекция 04. Механические передачи.
- •Лекция 05. Ремённая передача.
- •Лекция 06. Цепные передачи.
- •Расчеты цепных передач втулочно-роликовой цепью.
- •Лекция 07. Зубчатые передачи.
- •Цилиндрические прямозубые передачи.
- •Расчеты зубчатых передач.
- •Лекция 08. Подшипники.
- •Подшипники качения.
- •Лекция 09. Муфты.
Правило построения эпюры Qy.
Параллельно оси балки проводят нулевую линию.
Переносим на нее точки приложения внешних сил. Полученные участки называются характерными. На каждом из них поперечная сила будет постоянна и её эпюра изобразится прямой линией, параллельной нулевой.
Эпюру поперечной силы строим слева направо методом прямых скачков.
Правило построения эпюры Mx.
1й и 2й пункты такие же.
Эпюру Mx строим по характерным точкам. Этими точками являются границы участков.
Различают 2 вида точек:
Точки, в которых не действуют внешние моменты(C; A). Изгибающие моменты в этих точка определяются один раз как алгебраическая сумма моментов от внешней нагрузки, действующей или слева, или справа.
Точки, в которых действуют внешние моменты(B;D). Изгибающие моменты в этих точках определяются 2 раза: как алгебраические суммы моментов от внешней нагрузки, действующей и слева и справа. Правило знаков: нагрузка, действующая вверх, вызывает положительный изгибающий момент, а нагрузка, действующая вниз – отрицательный.
Рисунок 37.
Напряжения при изгибе.
Рассмотрим изогнутый брус:
Рисунок 38.
В нем можно выделить 3 области:
Выше оси.
В этой области продольные волокна при изгибе стали короче. Эта область называется областью сжатых продольных волокон.
Ниже оси.
В этой области продольные волокна при изгибе стали длиннее. Она называется областью растянутых продольных волокон.
На оси.
В этой области продольные волокна при изгибе не изменили своей длины. Эта область называется нейтральным слоем.
Таким образом, в поперечных сечениях бруса при изгибе действуют одновременно нормальные напряжения растяжения и нормальные напряжения сжатия. Они равны нулю в нейтральном слое, увеличиваются по мере удаления от него, и достигают наибольшего значения в точках внешнего контура сечения.
Если
поперечное сечение бруса симметрично
относительно нейтрального слоя, то
максимальные напряжения в растянутой
и сжатой областях равны по абсолютной
еличиине и определяются по следующей
формуле:
-
изгибающий момент;
-
момент сопротивления поперечного
сечения бруса относительно оси x,
проходящей через нейтральный слой. Он
определяется в зависимости от формы
поперечного сечения.
Круг:
П
рямоугольник:
Н.С.
Ч
аще
всего прямоугольное поперечное сечение
изготавливается с соотношением размеров
Расчеты на прочность при изгибе.
Расчеты на прочность производятся для опасного сечения бруса. Это такое сечение, в котором абсолютная величина изгибающего момента наибольшая(определяется по эпюре Mx).
В основе расчетов лежит условие прочности
-
проверочный расчет. Его цель – проверить
соблюдение условия прочности.
-
проектный расчет. Его цель – определить
размеры бруса.
-
для круглого сечения.
-
для прямоугольного сечения.
Полученные значения размеров округляются в большую сторону до ближайшего целого четного или кратного 5 числа.
-
определение допускаемой нагрузки. Цель
данного расчета – определить
грузоподъемность.
