Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции - ТКМ.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
8.74 Mб
Скачать
    1. 10.6. Композиционные материалы на неметаллической основе

К данным композиционным материалам относят материалы с полимерной, углеродной и керамической матрицей. В качестве упрочнителей применяют высокопрочные и высокомодульные углеродные и борные, стеклянные и органические волокна в виде нитей, жгутов, лент нетканых материалов.

Композиционные материалы на полимерной основе.

По сравнению с композиционными материалами на металлической основе эти материалы отличает хорошая технологичность, низкая плотность и в ряде случаев более высокие удельные прочность и жесткость, они имеют высокую коррозионную стойкость, хорошие теплозащитные и амортизационные свойства.

Однако, для большинства композиционных материалов с неметаллической основой характерны следующие недостатки: низкая прочность связи волокна с матрицей, резкая потеря прочности при повышении температуры выше 100-2000С, плохая свариваемость.

Различные группы композитов, армированные однотипными волокнами, имеют специальные названия, данные им по названию волокна. Композиции с углеродными волокнами называются углеволокнитами, с борными – бороволокнитами, стеклянными – стекловолокнитами, органическими - органоволокниты.

Следует отметить, что из-за быстрого отверждения и низкого коэффциента диффузии в неметаллической матрице, в композиционных материалах нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адгезионный характер, т.е. осуществляется путем молекулярного взаимодействия.

По сравнению с другими полимерами, применяемыми в качестве матриц, эпоксидные обладают более высокими механическими свойствами в интервале температур от -60 до 1800С, что и обеспечивает композитам более высокие прочностные характеристики при сжатии и сдвиге.

Но эпоксидные матрицы уступают феноло-формальдегидным и особенно полиимидным в теплостойкости.

Одним из способов улучшения свойств композиционных материалов является увеличение жесткости матрицы с помощью введения в их структуру ионов металлов, которые усиливают взаимосвязь между полимерными молекулами.

Таблица 10.5

Влияние добавок Ba2+ и Ni2+ на свойства

одноосно-армированных КМ.

Материал

, МПа

, МПа

, МПа

Без добавок

Ва2+

Ni2+

Без добавок

Ва2+

Ni2+

Без добавок

Ва2+

Ni2+

Полиметиленфенольная матрица

2060

2580

3100

81

87

90

-

-

-

То же+стеклянное волокно

44500

45000

45600

89

1260

1330

1580

2160

2280

То же+углеродное волокно

106000

107000

108000

87

1370

1520

-

-

-

Примечание. Значения модуля упругости и разрушающего напряжения определены при испытании на изгиб.

Стекловолокниты – содержат в качестве наполнителя стеклянные волокна. В настоящее время выпускают стеклопластики с ориентированным и неориентированным (хаотичным) расположением волокон. Стекловолокниты имеют самую высокую прочность и удельную прочность. Их достоинством является недефицитность и низкая стоимость упрочнителя, по удельной жесткости они превосходят легированные стали.

Углеволокниты – это полимерные композиционные материалы, содержащие в качестве наполнителя углеродные волокна. Углеволокниты обладают низкими теплопроводностью и электропроводностью, но их теплопроводность в 1,5-2 раза выше, чем у стекловолокнитов. Они имеют малый и стабильный коэффициент трения и обладают хорошей износостойкостью.

К недостаткам относят низкую прочность при сжатии и межслойном сдвиге.

Бороволокниты характеризуются высоким временным сопротивлением пределами прочности при сжатии и сдвиге, твердостью и модулем упругости.

Свойства бороволокнитов зависят не только от свойств волокон и их объемного содержания, но и в большей степени от их геометрии и диаметра. Так, ячеистая структура волокна обеспечивает высокую прочность при сдвиге и срезе. Большой диаметр волокон и высокий модуль упругости придают устойчивость бороволокниту и способствуют повышению прочности при сжатии.

Органоволокниты – обладают малой массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременных нагрузок, резкой смене температуры. Они устойчивы в агрессивных средах и влажном климате, имеют низкие электро- и теплопроводность.

Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть.

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электро- и радиопромышленности, авиатехнике, автомобилестроении, из них изготавливают трубы, емкости для реактивов, покрытия судов и др. изделия.

Свойства композиционных материалов с полимерной матрицей приведены в таблице 10.6.

Таблица 10.6 массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременннию прочности при сжа

Свойства одноосно-армированных композиционных материалов

с полимерной матрицей.

КМ

, т/м3

, МПа

км

, %

, ГПа

/

км

, МПа (на базе 107 циклов)

Углеволокниты:

КМУ-1л

1,4

650

46

0,5

120

8,6

300

КМУ-1у

1,47

1020

70

0,6

180

12,2

500

КМУ-1в

1,55

1000

65

0,6

180

11,5

350

КМУ-2в

1,3

380

30

0,4

81

6,2

135

Бороволокниты:

КМБ-1к

2

900

43

0,4

214

10,7

350

КМБ-2к

2

1000

50

0,3

260

13

400

КМБ-3к

2

1300

65

0,3

260

12,5

420

Органоволокниты с упрочнителем:

эластичным

1,15-1,3

100-190

8-15

10-20

2,5-8,0

0,22-0,6

100

жестким

1,2-1,4

650-700

50

2-5

35

2,7

-

Стекловолокниты

2,2

2100

96

-

70

3,2

-

Керамические композиционные материалыэто материалы, в состав которых входят керамическая матрица и металлические или неметаллические наполнители. В качестве матриц используют силикатные (SiO2), алюмосиликатные (Al2O3-SiO2), алюмоборосиликатные (Al2O3- B2O3 SiO2) и другие стекла, тугоплавкие оксиды (BeO, Al2O3, Zr O2 и т.д.), нитрид (Si3Nu), бориды (TiB2, ZrB2) и карбиды (SiC, TiC).

Керамические композиты на основе карбидов и оксидов с добавками металлического порошка (< 50% (об.)) называются керметами. Они не нашли широкого применения из-за высокой хрупкости.

Для армирования композиционных материалов используют металлическую проволоку из жаропрочной стали, вольфрама, молибдена, а также неметаллические волокна (углеродные, керамические). Ориентация волокон в зависимости от условий нагружения может быть направленный или хаотичной.

Металлический каркас из тугоплавких металлов и электропрочных сталей имеет целью создать пластичный каркас, предохраняющий композит от разрушения. Ударная вязкость и термостойкость керамических композитов при увеличении содержания волокна не более чем на 25% повышаются.

Применяются керамические композиционные материалы при высоких температурах для изготовления ответственных тяжелонагруженных изделий (высокотемпературные подшипники уплотнений, направляющие и рабочие лопатки газотурбинных двигателей и т.д.).

Углерод-углеродные композиционные материалы представляют собой углеродную матрицу, армированную углеродными волокнами или тканями. Одинаковая природа и близкие физико-химические свойства обеспечивают прочную связь волокон с матрицей и уникальные свойства этих композиционных материалов.

Достоинствами данных композитов являются малая плотность (1,3-2,1 т/м3), высокие теплоемкость, сопротивление тепловому удару, эрозии и облучению, низкий коэффициент трения, высокая коррозионностойкость, широкий диапазон электрических свойств (от проводнико до полупроводников), высокие прочность и жесткость (таблица 10.7). К недостаткам относят склонность к окислению при нагреве выше 5000С в окислительной среде. В инертной среде и вакууме изделия из углерод-углеродных композиционных материалов работают до 30000С.

Исходным материалом для матриц служат синтетические органические смолы с высоким коксовым остатком (феноло-формальдегидные, фурановые, эпоксидные и др.), а также каменноугольные и нефтяные пеки (вязкие остатки перегонки дегтей, смол или при пиролизе нефти).

Наполнителями служат углеграфитовые волокна, жгуты, нити, тканные материалы.

Применяются углерод-углеродные композиционные материалы при изготовлении газотурбинных двигателей, турбинных фарсунок, панели, для торомзных накладок и др.

Таблица 10.7

Типичные эксплуатационные свойства УУКМ

Характеристики

Отечественные УУКМ

Зарубежные аналоги

А

Б

Sekarb-OOO

Sekarb-SF

Aerolo

r-32

Aerolo

r-32

Тип каркаса

3D

4D

4D

4D

3D

3D

Плотность, г/см3

1,91

1,91

1,87

2,0

1,93

1,85

Прочность при растяжении, МПа

113,0

110,0

-

130,0

170,0

80,0

Модульупругости, ГПа

52,5

50,0

-

62,0

-

-

Прочность при сжатии, МПа

145,0

140,0

95,0

115,0

130,0

100,0

Коэффициент теплопроводности, Вт/м·К

61,0

54,00

100,0

180,0

150,0

200,0

ТКЛР, 10-6 К-1

3,4

3,0

1,5

0,5…4,0

-

-

Диаметр, мм:

заготовки

стержней

410

1,2

-

500

1,0…1,8

500

-

-

1,6

-

1,2

Температура обработки, 0С

-

-

3000

-

2700

1950