Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции - ТКМ.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
8.74 Mб
Скачать
  1. Композиционные материалы

    1. 10.1. Введение

Композиционные материалы – это материалы, состоящие из двух или несколько компонентов, которые отличаются по своей природе или химическому составу, где компоненты объединены в единую монолитную структуру с границей раздела между компонентами, оптимальное сочетание которых позволяет получить комплекс физико-химических и механических свойств, отличающихся от комплекса свойств компонентов.

В широком смысле понятие «композиционный материал» включает в себя любой материал с гетерогенной структурой, т.е. структурой, состоящей из двух и более фаз.

Первым создателем композиционных материалов была сама природа. Множество природных конструкций (стволы деревьев, кости животных, зубы людей и т.д.) имеют характерную волокнистую структуру. Она состоит из сравнительно пластичного матричного вещества и более твердых и прочных веществ, имеющих форму волокон. Например: древесина – это композиция, состоящая из пучков высокопрочных целлюлозных волокон трубчатого строения, связанных между собой матрицей из органического вещества (лигнина), придающего древесине поперечную жесткость.

Примерами композиционных материалов могут быть и такие природные образования, как минералы. Нефрит – состоит из плотноупакованных игольчатых кристаллов, связанных друг с другом на поверхностях раздела. Такая структура обеспечивает высокую вязкость нефрита и поэтому различные племена использовали его как материал для изготовления топоров.

Наука о композиционных материалах зародилась совсем недавно. Первым примером научного подхода к созданию искусственных композиционных материалов можно считать появление железобетона и стеклопластиков.

Как известно, бетон хорошо сопротивляется сжатию и очень плохо выдерживает растягивающие усилия. Композиция из бетона и стальной арматуры, обладающая высокой прочностью на растяжение, объединяет в одном материале положительные свойства обоих компонентов.

Первый патент на композиционный полимерный материал был выдан в 1909 г., он предусматривал упрочнение синтетических смол природными волокнами (бумагой, тканями).

Стеклопластики запатентованы в 1935 г. Это были первые полимерные материалы, в которых как упрочнитель использовались неорганические волокна.

В 50-х годах XX столетия обнаружили, что многие материалы в виде тонких монокристаллов игольчатой формы обладают высокой прочностью (до 10ГПа и более). Были получены новые виды неорганических поликристаллических волокон – углеродные, борные. Возникла идея использовать все эти сверхпрочные волокнистые материалы для армирования различных матриц, и в первую очередь металлов.

10.2. Общая характеристика композиционных материалов и их классификация

Внимание к композиционным материалам в последнее время непрерывно возрастает. Это объясняется тем, что возможности повышения механических свойств традиционных конструкционных материалов в значительной степени исчерпаны.

Композиционные материалы по удельным прочности и жесткости, прочности при высокой температуре, сопротивлению усталостному разрушению и другим свойствам значительно превосходят все известные конструкционные сплавы. Уровень заданного комплекса свойств проектируется заранее и реализуется в процессе изготовления материала.

Рис. 10.1. Удельные прочность и жесткость стали, титановых, алюминиевых сплавов и композитов (КАС-1, ВКА-1Б).

Свойства композиционных материалов в основном зависят от физико-механических свойств компонентов и прочности связи между ними. Отличительной особенностью данных материалов является то, что в них проявляются достоинства компонентов, а не их недостатки. Вместе с тем композиционным материалам присущи свойства, которыми не обладают отдельно взятые компоненты, входящие в их состав. Для оптимизации свойств композиции выбирают компоненты с резко отличающимися, но дополняющими друг друга свойствами.

По своему составу композиционные материалы состоят из основы (матрицы) и наполнителя (упрочнителя, армирующего компонента).

Основой (матрицей) композиционных материалов служат металлы или сплавы, полимеры, углеродные и керамические материалы.

Матрица связывает композицию, придает ей форму. От свойств матрицы в значительной степени зависят технологические режимы получения композиционных материалов и такие важные эксплуатационные характеристики как: рабочая температура, сопротивление усталостному разрушению, плотность и удельная прочность.

Созданы композиционные материалы с комбинированными матрицами, состоящими из чередующихся слоев (двух и более) различного химического состава. Такие материалы называют полиматричными. Для полиматричных материалов характерен более обширный перечень полезных свойств. Например, использование в качестве матрицы наряду с алюминием титана увеличивает прочность композиционных материалов в направлении, перпендикулярном оси волокон. Алюминиевые слои в матрице способствуют уменьшению плотности материала.

В матрице равномерно распределен другой компонент, называемый арматурой или армирующим компонентом, или, иногда наполнителем. Понятие «армирующий» означает – «введенный в материал с целью изменения свойств», но не несет в себе однозначного понятия «упрочняющий».

Армирующие компоненты должны обладать высокими прочностью, твердостью, и модулем упругости. По этим свойствам они значительно превосходят матрицу.

Свойства композиционных материалов зависят также от формы или геометрии, размера, количества и характера распределения наполнителя (схемы армирования).

По форме наполнители разделяют на три основные группы:

1. Нульмерные наполнители, имеющие в трех измерениях очень малые размеры одного порядка (частицы);

2. Одномерные наполнители имеют малые размеры в двух направлениях и значительно превосходящий их размер в третьем измерении (волокна);

3. Двухмерные наполнители имеют два размера соизмеримых с размером композиционного материала и значительно превосходят третий (пластины, ткань).

Нитевидная форма армирующих элементов имеет как положительные так и отрицательные стороны. Преимущество их состоит в высокой прочности и возможности создать упрочнение только в том направлении, в котором это требуется конструктивно. Недостаток такой формы заключается в том, что волокна способны передавать нагрузку только в направлении своей оси, тогда как в перпендикулярном направлении упрочнения нет, а в некоторых случаях может проявиться даже разупрочнение.

Наполнители, используемые в качестве арматуры, должны иметь следующие свойства: высокую температуру плавления, малую плотность, высокую прочность во всем интервале рабочих температур, технологичность, минимальную растворимость в матрице, высокую химическую стойкость, отсутствие токсичности при изготовлении и в эксплуатации.

Композиционные материалы, которые содержат два и более различных наполнителя, называют полиармированными.

Если композиционные материалы состоят их трех и более компонентов, они называются гибридными.

Композиционные материалы классифицируются по нескольким основным признакам:

а) материалу матрицы и армирующих компонентов;

б) структуре: геометрии и рапсоложению компонентов;

в) методу получения;

г) области применения.

Рассмотрим некоторые классификационные характеристики композиционных материалов.

Материал матрицы и армирующих компонентов.

Харктеристика композиционных материалов по материалу матрицы и армирующих компонентов указывает на их физико- химическую природу.

По материалу матрицы различают:

1. Металлические композиционные материалы или композиционные материалы на основе металлов и сплавов: чаще всего используются алюминий, магний, титан, медь и сплавы на их основе. Также делаются попытки использовать в качестве матрицы высокопрочные стали, тугоплавкие металлы и сплавы.

2. Композиционные материалы на основе интерметаллидов (химическое соединение металла с металлом): в качестве материала матрицы используютя жаропрочные интерметаллиды – Ti3Al, TiAl, NiAl, Ni3Al и др. Сюда относят композиты на основе силицидов металлов типа MoSi2, Nb5Si3 и др.

3. Керамические композиционные материалы: в качестве матрицы используются неорганические соединения силикатные (SiO2), алюмосиликатные (Al2O3-SiO2), нитриды (Si3N4), бориды (TiB2, ZrB2) и карбиды (SiC, TiC).

4. Композиционные материалы на основе неметаллических компонентов в качестве матрицы используют каменноугольные и нефтяные пропитывающие пеки – вязкие остатки перегонки дегтей, смол, образующихся при термической обработке твердых топлив (угля, торфа и т.д.) или при пиролизе нефти. Это так называемая углеродная матрица, она представляет собой сложную смесь полуциклических ароматических углеводородов.

5. Композиционные материалы с матрицей из полимеров: матрицу составляют эпоксидные, полиэфирные, феноло-формальдегидные и полиамидные смолы.

Армирующие компоненты (наполнители).

В настоящее время широкое применение нашли армирующие компоненты, изготовленные из:

- металлов и сплавов (стали, бериллия, вольфрама титана и др.);

- неметаллов (углерод, бор);

- керамики (Al2O3, SiC, TiB2, TiC, AlN и др.);

- стекол (стекло Е, стекло S);

- органических веществ (лавсан, кевлар, полиэтилен и др.)

Структура: геометрия и расположение компонентов структурных составляющих.

Классификация по структуре, где композиционные материалы классифицируются в соответствии с морфологией фаз, составляющих их микроструктуру, или геометрией компонентов (рис. 10.2).

Согласно этой классификации, композиционные материалы относятся к одному из следующих классов: