- •Введение
- •1. Строение и свойства металлов
- •1.1. Классификация металлов
- •. Кристаллическое строение металлов
- •1.3. Методы исследования структуры металлов
- •1.4. Свойства материалов и способы из измерения
- •2.Основы производства черных и цветных металлов (Металлургическое производство)
- •2.1. Способы извлечения металлов из руд
- •2.2. Металлургическое топливо Металлургическое топливо используется для получения высоких температур в печах, а также для непосредственного участия в химических процессах восстановления металлов.
- •2.3. Огнеупорные материалы
- •2.4. Производство чугуна
- •2.4.1.Материалы, применяемые в доменном производстве
- •2.4.2. Подготовка руды к плавке
- •2.4.3. Устройство доменной печи
- •2.4.4. Доменный процесс
- •2.4.5. Продукты доменного производства
- •2.4.6. Интенсификация доменного плавки
- •2.5. Производство стали
- •2.5.1. Классификация сталей
- •2.5.2. Химические процессы сталеплавильного производства
- •2.5.3. Конвертерное производство стали
- •Технология плавки.
- •2.5.4. Раскисление стали
- •2.5.5. Производство стали в мартеновских печах
- •2.5.6. Производство сталей в электропечах
- •Плавка стали в индукционных печах.
- •2.5.7. Способы повышения качества стали
- •Вакуумная обработка стали в ковше.
- •2.5.8. Разливка стали
- •2.6. Производство цветных металлов
- •2.6.1. Производство меди
- •2.6.3. Производство титана
- •2.6.4. Производство магния
- •3. Литейное производство
- •3.1. Введение
- •3.2. Основы литейного производства (терминология)
- •3.3. Изготовление форм
- •3.4Дефекты отливок.
- •3.5. Печи для плавки металлов и сплавов
- •3.6. Подготовка расплава к заливке
- •. Технологическая схема производства отливок
- •. Производство отливок из чугуна
- •.Производство отливок из стали
- •. Производство отливок из алюминия
- •. Специальные методы литья
- •3.11.1. Литье в разовые формы
- •3.11.2. Литье в постоянные формы
- •Обработка металлов давлением
- •4.1. Введение
- •4.2. Теоретические основы обработки металлов давлением
- •4.3. Нагрев металла
- •4.4. Процессы обработки металлов давлением
- •4.4.1. Прокатка
- •1. Рабочая часть валка (бочка); 2. Шейка валка; 3. Трефы.
- •4.4.2. Волочение
- •4.4.3. Прессование
- •4.4.4. Свободная ковка
- •4.4.5. Штамповка
- •Основы сварочного производства
- •5.1. Введение
- •5.2. Физические основы процесса сварки и ее классификация
- •. Основные виды сварных соединений и швов
- •5.4. Свариваемость металла
- •5.5. Строение сварного шва
- •.Сварка плавлением
- •Электродуговая сварка. Сущность процесса
- •1. Электрод; 2. Основной металл.
- •Электрическая дуга и ее свойства
- •1. Электрод. 2. Основной металл. 3. Электроны. 4. Ионизация. 5. Катодное пятно. 6. Столб дуги. 7. Анодное пятно.
- •5.6.3. Источники питания сварочной дуги
- •5.6.4. Ручная дуговая сварка
- •Методы повышения производительности при ручной
- •5.6.5. Автоматическая сварка под слоем флюса
- •5.6.6. Полуавтоматическая сварка под слоем флюса
- •- Электрододержатель; 2 - гибкий шланговый провод; 3 - кассета;
- •5.6.7. Электрошлаковая сварка
- •5.6.8. Электросварка в среде защитных газов
- •5.6.9. Плазменная сварка
- •- Вольфрамовый электрод; 2 - втулка изоляционная; 3 - сопло;
- •5.6.10. Электронно-лучевая сварка
- •5.6.11. Газовая сварка металлов
- •1. Ядро пламени, 2. Восстановительная зона, 3. Факел пламени.
- •5.6.12. Газовая резка металлов
- •5.7. Сварка давлением
- •5.7.1. Индукционная сварка (высокочастотная)
- •5.7.2. Контактная сварка
- •– Детали; 2 - зажимные губки; 3 - место стыка; р-усилие сжатия.
- •5.7.3. Диффузионная сварка
- •5.7.4. Газопрессовая сварка
- •5.7.5. Холодная сварка
- •5.7.6. Ультразвукоывая сварка
- •5.7.7. Сварка трением
- •. Особенности сварки различных металлов и сплавов
- •5.8.1. Сварка углеродистых сталей
- •5.8.2. Сварка легированных сталей
- •5.8.3. Сварка чугуна
- •5.8.4. Особенности сварки цветных металлов и сплавов
- •5.9. Дефекты и контроль качества сварных швов
- •5.10. Сварка изделий из пластмасс
- •5.11. Наплавка
- •5.12. Напыление материалов
- •I. Подготовка поверхности.
- •II. Напыление.
- •III. Последующая обработка.
- •Пайка материалов
- •1, 2, 5, 6 – Малопрочные соединения, применяются редко;
- •I. По температуре плавления:
- •II. По основному компоненту:
- •I. Пайка паяльником.
- •II. Пайка электросопротивлением.
- •III. Индукционная пайка.
- •IV. Пайка в ванне.
- •Подготовка поверхности включает в себя
- •7. Получение неразъемных соединений склеиванием
- •I. Обработка поверхности изделий.
- •1. Подготовка поверхности включает в себя:
- •II. Обработка клеящего вещества:
- •III. Соединение склеиваемых деталей:
- •1. Сочленение и соединение склеиваемых деталей с использованием фиксирующих и поджимающих устройств;
- •Подготовка поверхности:
- •2. Предварительная обработка поверхности:
- •3. Окончательная обработка поверхности:
- •Неметаллические материалы
- •8.1. Полимерные материалы
- •8.2. Древесные материалы
- •8.3. Резина и резинотехнические изделия
- •Основы порошковой металлургии
- •Композиционные материалы
- •10.1. Введение
- •10.2. Общая характеристика композиционных материалов и их классификация
- •I. Дисперсноупрочненные компоненты и композиты, армированные частицами (рис. 10.2. А).
- •II. Волокнистые композицонные материалы (рис. 10.2, б).
- •III. Слоистые композиционные материалы (рис. 10.2, в).
- •10.3. Методы получения и свойства армирующих волокон
- •10.4. Способы получения композиционных материалов
- •I. Подготовка арматуры:
- •II. Приготовление связующего:
- •10.5. Композиционные материалы на металлической основе
- •10.6. Композиционные материалы на неметаллической основе
- •10.7. Слоистые композиционные материалы
- •Оглавление
Композиционные материалы
10.1. Введение
Композиционные материалы – это материалы, состоящие из двух или несколько компонентов, которые отличаются по своей природе или химическому составу, где компоненты объединены в единую монолитную структуру с границей раздела между компонентами, оптимальное сочетание которых позволяет получить комплекс физико-химических и механических свойств, отличающихся от комплекса свойств компонентов.
В широком смысле понятие «композиционный материал» включает в себя любой материал с гетерогенной структурой, т.е. структурой, состоящей из двух и более фаз.
Первым создателем композиционных материалов была сама природа. Множество природных конструкций (стволы деревьев, кости животных, зубы людей и т.д.) имеют характерную волокнистую структуру. Она состоит из сравнительно пластичного матричного вещества и более твердых и прочных веществ, имеющих форму волокон. Например: древесина – это композиция, состоящая из пучков высокопрочных целлюлозных волокон трубчатого строения, связанных между собой матрицей из органического вещества (лигнина), придающего древесине поперечную жесткость.
Примерами композиционных материалов могут быть и такие природные образования, как минералы. Нефрит – состоит из плотноупакованных игольчатых кристаллов, связанных друг с другом на поверхностях раздела. Такая структура обеспечивает высокую вязкость нефрита и поэтому различные племена использовали его как материал для изготовления топоров.
Наука о композиционных материалах зародилась совсем недавно. Первым примером научного подхода к созданию искусственных композиционных материалов можно считать появление железобетона и стеклопластиков.
Как известно, бетон хорошо сопротивляется сжатию и очень плохо выдерживает растягивающие усилия. Композиция из бетона и стальной арматуры, обладающая высокой прочностью на растяжение, объединяет в одном материале положительные свойства обоих компонентов.
Первый патент на композиционный полимерный материал был выдан в 1909 г., он предусматривал упрочнение синтетических смол природными волокнами (бумагой, тканями).
Стеклопластики запатентованы в 1935 г. Это были первые полимерные материалы, в которых как упрочнитель использовались неорганические волокна.
В 50-х годах XX столетия обнаружили, что многие материалы в виде тонких монокристаллов игольчатой формы обладают высокой прочностью (до 10ГПа и более). Были получены новые виды неорганических поликристаллических волокон – углеродные, борные. Возникла идея использовать все эти сверхпрочные волокнистые материалы для армирования различных матриц, и в первую очередь металлов.
10.2. Общая характеристика композиционных материалов и их классификация
Внимание к композиционным материалам в последнее время непрерывно возрастает. Это объясняется тем, что возможности повышения механических свойств традиционных конструкционных материалов в значительной степени исчерпаны.
Композиционные материалы по удельным прочности и жесткости, прочности при высокой температуре, сопротивлению усталостному разрушению и другим свойствам значительно превосходят все известные конструкционные сплавы. Уровень заданного комплекса свойств проектируется заранее и реализуется в процессе изготовления материала.
Рис. 10.1. Удельные прочность и жесткость стали, титановых, алюминиевых сплавов и композитов (КАС-1, ВКА-1Б).
Свойства композиционных материалов в основном зависят от физико-механических свойств компонентов и прочности связи между ними. Отличительной особенностью данных материалов является то, что в них проявляются достоинства компонентов, а не их недостатки. Вместе с тем композиционным материалам присущи свойства, которыми не обладают отдельно взятые компоненты, входящие в их состав. Для оптимизации свойств композиции выбирают компоненты с резко отличающимися, но дополняющими друг друга свойствами.
По своему составу композиционные материалы состоят из основы (матрицы) и наполнителя (упрочнителя, армирующего компонента).
Основой (матрицей) композиционных материалов служат металлы или сплавы, полимеры, углеродные и керамические материалы.
Матрица связывает композицию, придает ей форму. От свойств матрицы в значительной степени зависят технологические режимы получения композиционных материалов и такие важные эксплуатационные характеристики как: рабочая температура, сопротивление усталостному разрушению, плотность и удельная прочность.
Созданы композиционные материалы с комбинированными матрицами, состоящими из чередующихся слоев (двух и более) различного химического состава. Такие материалы называют полиматричными. Для полиматричных материалов характерен более обширный перечень полезных свойств. Например, использование в качестве матрицы наряду с алюминием титана увеличивает прочность композиционных материалов в направлении, перпендикулярном оси волокон. Алюминиевые слои в матрице способствуют уменьшению плотности материала.
В матрице равномерно распределен другой компонент, называемый арматурой или армирующим компонентом, или, иногда наполнителем. Понятие «армирующий» означает – «введенный в материал с целью изменения свойств», но не несет в себе однозначного понятия «упрочняющий».
Армирующие компоненты должны обладать высокими прочностью, твердостью, и модулем упругости. По этим свойствам они значительно превосходят матрицу.
Свойства композиционных материалов зависят также от формы или геометрии, размера, количества и характера распределения наполнителя (схемы армирования).
По форме наполнители разделяют на три основные группы:
1. Нульмерные наполнители, имеющие в трех измерениях очень малые размеры одного порядка (частицы);
2. Одномерные наполнители имеют малые размеры в двух направлениях и значительно превосходящий их размер в третьем измерении (волокна);
3. Двухмерные наполнители имеют два размера соизмеримых с размером композиционного материала и значительно превосходят третий (пластины, ткань).
Нитевидная форма армирующих элементов имеет как положительные так и отрицательные стороны. Преимущество их состоит в высокой прочности и возможности создать упрочнение только в том направлении, в котором это требуется конструктивно. Недостаток такой формы заключается в том, что волокна способны передавать нагрузку только в направлении своей оси, тогда как в перпендикулярном направлении упрочнения нет, а в некоторых случаях может проявиться даже разупрочнение.
Наполнители, используемые в качестве арматуры, должны иметь следующие свойства: высокую температуру плавления, малую плотность, высокую прочность во всем интервале рабочих температур, технологичность, минимальную растворимость в матрице, высокую химическую стойкость, отсутствие токсичности при изготовлении и в эксплуатации.
Композиционные материалы, которые содержат два и более различных наполнителя, называют полиармированными.
Если композиционные материалы состоят их трех и более компонентов, они называются гибридными.
Композиционные материалы классифицируются по нескольким основным признакам:
а) материалу матрицы и армирующих компонентов;
б) структуре: геометрии и рапсоложению компонентов;
в) методу получения;
г) области применения.
Рассмотрим некоторые классификационные характеристики композиционных материалов.
Материал матрицы и армирующих компонентов.
Харктеристика композиционных материалов по материалу матрицы и армирующих компонентов указывает на их физико- химическую природу.
По материалу матрицы различают:
1. Металлические композиционные материалы или композиционные материалы на основе металлов и сплавов: чаще всего используются алюминий, магний, титан, медь и сплавы на их основе. Также делаются попытки использовать в качестве матрицы высокопрочные стали, тугоплавкие металлы и сплавы.
2. Композиционные материалы на основе интерметаллидов (химическое соединение металла с металлом): в качестве материала матрицы используютя жаропрочные интерметаллиды – Ti3Al, TiAl, NiAl, Ni3Al и др. Сюда относят композиты на основе силицидов металлов типа MoSi2, Nb5Si3 и др.
3. Керамические композиционные материалы: в качестве матрицы используются неорганические соединения силикатные (SiO2), алюмосиликатные (Al2O3-SiO2), нитриды (Si3N4), бориды (TiB2, ZrB2) и карбиды (SiC, TiC).
4. Композиционные материалы на основе неметаллических компонентов в качестве матрицы используют каменноугольные и нефтяные пропитывающие пеки – вязкие остатки перегонки дегтей, смол, образующихся при термической обработке твердых топлив (угля, торфа и т.д.) или при пиролизе нефти. Это так называемая углеродная матрица, она представляет собой сложную смесь полуциклических ароматических углеводородов.
5. Композиционные материалы с матрицей из полимеров: матрицу составляют эпоксидные, полиэфирные, феноло-формальдегидные и полиамидные смолы.
Армирующие компоненты (наполнители).
В настоящее время широкое применение нашли армирующие компоненты, изготовленные из:
- металлов и сплавов (стали, бериллия, вольфрама титана и др.);
- неметаллов (углерод, бор);
- керамики (Al2O3, SiC, TiB2, TiC, AlN и др.);
- стекол (стекло Е, стекло S);
- органических веществ (лавсан, кевлар, полиэтилен и др.)
Структура: геометрия и расположение компонентов структурных составляющих.
Классификация по структуре, где композиционные материалы классифицируются в соответствии с морфологией фаз, составляющих их микроструктуру, или геометрией компонентов (рис. 10.2).
Согласно этой классификации, композиционные материалы относятся к одному из следующих классов:
