- •Введение
- •1. Строение и свойства металлов
- •1.1. Классификация металлов
- •. Кристаллическое строение металлов
- •1.3. Методы исследования структуры металлов
- •1.4. Свойства материалов и способы из измерения
- •2.Основы производства черных и цветных металлов (Металлургическое производство)
- •2.1. Способы извлечения металлов из руд
- •2.2. Металлургическое топливо Металлургическое топливо используется для получения высоких температур в печах, а также для непосредственного участия в химических процессах восстановления металлов.
- •2.3. Огнеупорные материалы
- •2.4. Производство чугуна
- •2.4.1.Материалы, применяемые в доменном производстве
- •2.4.2. Подготовка руды к плавке
- •2.4.3. Устройство доменной печи
- •2.4.4. Доменный процесс
- •2.4.5. Продукты доменного производства
- •2.4.6. Интенсификация доменного плавки
- •2.5. Производство стали
- •2.5.1. Классификация сталей
- •2.5.2. Химические процессы сталеплавильного производства
- •2.5.3. Конвертерное производство стали
- •Технология плавки.
- •2.5.4. Раскисление стали
- •2.5.5. Производство стали в мартеновских печах
- •2.5.6. Производство сталей в электропечах
- •Плавка стали в индукционных печах.
- •2.5.7. Способы повышения качества стали
- •Вакуумная обработка стали в ковше.
- •2.5.8. Разливка стали
- •2.6. Производство цветных металлов
- •2.6.1. Производство меди
- •2.6.3. Производство титана
- •2.6.4. Производство магния
- •3. Литейное производство
- •3.1. Введение
- •3.2. Основы литейного производства (терминология)
- •3.3. Изготовление форм
- •3.4Дефекты отливок.
- •3.5. Печи для плавки металлов и сплавов
- •3.6. Подготовка расплава к заливке
- •. Технологическая схема производства отливок
- •. Производство отливок из чугуна
- •.Производство отливок из стали
- •. Производство отливок из алюминия
- •. Специальные методы литья
- •3.11.1. Литье в разовые формы
- •3.11.2. Литье в постоянные формы
- •Обработка металлов давлением
- •4.1. Введение
- •4.2. Теоретические основы обработки металлов давлением
- •4.3. Нагрев металла
- •4.4. Процессы обработки металлов давлением
- •4.4.1. Прокатка
- •1. Рабочая часть валка (бочка); 2. Шейка валка; 3. Трефы.
- •4.4.2. Волочение
- •4.4.3. Прессование
- •4.4.4. Свободная ковка
- •4.4.5. Штамповка
- •Основы сварочного производства
- •5.1. Введение
- •5.2. Физические основы процесса сварки и ее классификация
- •. Основные виды сварных соединений и швов
- •5.4. Свариваемость металла
- •5.5. Строение сварного шва
- •.Сварка плавлением
- •Электродуговая сварка. Сущность процесса
- •1. Электрод; 2. Основной металл.
- •Электрическая дуга и ее свойства
- •1. Электрод. 2. Основной металл. 3. Электроны. 4. Ионизация. 5. Катодное пятно. 6. Столб дуги. 7. Анодное пятно.
- •5.6.3. Источники питания сварочной дуги
- •5.6.4. Ручная дуговая сварка
- •Методы повышения производительности при ручной
- •5.6.5. Автоматическая сварка под слоем флюса
- •5.6.6. Полуавтоматическая сварка под слоем флюса
- •- Электрододержатель; 2 - гибкий шланговый провод; 3 - кассета;
- •5.6.7. Электрошлаковая сварка
- •5.6.8. Электросварка в среде защитных газов
- •5.6.9. Плазменная сварка
- •- Вольфрамовый электрод; 2 - втулка изоляционная; 3 - сопло;
- •5.6.10. Электронно-лучевая сварка
- •5.6.11. Газовая сварка металлов
- •1. Ядро пламени, 2. Восстановительная зона, 3. Факел пламени.
- •5.6.12. Газовая резка металлов
- •5.7. Сварка давлением
- •5.7.1. Индукционная сварка (высокочастотная)
- •5.7.2. Контактная сварка
- •– Детали; 2 - зажимные губки; 3 - место стыка; р-усилие сжатия.
- •5.7.3. Диффузионная сварка
- •5.7.4. Газопрессовая сварка
- •5.7.5. Холодная сварка
- •5.7.6. Ультразвукоывая сварка
- •5.7.7. Сварка трением
- •. Особенности сварки различных металлов и сплавов
- •5.8.1. Сварка углеродистых сталей
- •5.8.2. Сварка легированных сталей
- •5.8.3. Сварка чугуна
- •5.8.4. Особенности сварки цветных металлов и сплавов
- •5.9. Дефекты и контроль качества сварных швов
- •5.10. Сварка изделий из пластмасс
- •5.11. Наплавка
- •5.12. Напыление материалов
- •I. Подготовка поверхности.
- •II. Напыление.
- •III. Последующая обработка.
- •Пайка материалов
- •1, 2, 5, 6 – Малопрочные соединения, применяются редко;
- •I. По температуре плавления:
- •II. По основному компоненту:
- •I. Пайка паяльником.
- •II. Пайка электросопротивлением.
- •III. Индукционная пайка.
- •IV. Пайка в ванне.
- •Подготовка поверхности включает в себя
- •7. Получение неразъемных соединений склеиванием
- •I. Обработка поверхности изделий.
- •1. Подготовка поверхности включает в себя:
- •II. Обработка клеящего вещества:
- •III. Соединение склеиваемых деталей:
- •1. Сочленение и соединение склеиваемых деталей с использованием фиксирующих и поджимающих устройств;
- •Подготовка поверхности:
- •2. Предварительная обработка поверхности:
- •3. Окончательная обработка поверхности:
- •Неметаллические материалы
- •8.1. Полимерные материалы
- •8.2. Древесные материалы
- •8.3. Резина и резинотехнические изделия
- •Основы порошковой металлургии
- •Композиционные материалы
- •10.1. Введение
- •10.2. Общая характеристика композиционных материалов и их классификация
- •I. Дисперсноупрочненные компоненты и композиты, армированные частицами (рис. 10.2. А).
- •II. Волокнистые композицонные материалы (рис. 10.2, б).
- •III. Слоистые композиционные материалы (рис. 10.2, в).
- •10.3. Методы получения и свойства армирующих волокон
- •10.4. Способы получения композиционных материалов
- •I. Подготовка арматуры:
- •II. Приготовление связующего:
- •10.5. Композиционные материалы на металлической основе
- •10.6. Композиционные материалы на неметаллической основе
- •10.7. Слоистые композиционные материалы
- •Оглавление
I. Подготовка поверхности.
Так как при металлизации не происходит оплавление частиц напыленного слоя с основным металлом, то поверхность металла – подложки подвергают подготовке. Поверхности напыляемого изделия должна быть придана шероховатость или поверхность должна быть покрыта такими метериалами, как молибден, у которого происходит частично молекулярное сцепление.
Без специальной подготовки поверхности можно производить напыление на неметаллическе материалы: дерево, бумагу, картон, ткани, керамику, гипс, бетон и т.д. Однако в этих случаях не должно быть следов грязи, масла, краски или влаги.
Способ подготовки шероховатости зависит от толщины покрытия, конфигурации и последующей обработки напыленного слоя.
Способы подготовки поверхности.
1. Струйная обработка абразивом (кварцевым песком, корундом) – применяется для стальных конструкций с гладкой поверхностью, нуждающейся в тонком покрытии от коррозии.
2. Подготовка со снятие стружки (нарезка рваной трубы, фрезеровка канавок, насечка, изготовление канавок клиновидной формы) – для тел вращения, направление брака литья, плоские стальные поверхности с толстыми покрытиями. Но затем следует струйная обработка абразивом.
3. Комбинированная обработка (нарезка полукруглой резьбы и рифление, нарезка резьбы и струйная обработка материалом, нарезка трубы с разводной) – для тел вращения с высокой прочностью сцепления слоя с основой и при высоких динамических нагрузках.
4. Напыление подслоя (напыляют молибден или никель для лучшего схватывания напыляемого материала) – при получении тонкого слоя напыления и твердой поверхности. Слой молибдена хорошо соединяется с основным металлом, а его шероховатая поверхность обеспечивает сцепление с последующим слоем.
Это основные способы подготовки поверхности к напылению. Однако при подготовке поверхности следует учитывать следующее:
- Какая прочность сцепления нанесенного покрытия может быть достигнута с помощью данного способа подготовки поверхности;
- Какова твердость поверхности обрабатываемого изделия;
- Какой толщины отверстие можно напылять;
- Какой способ будет наиболее экономичным, с учетом всего вышеизложенного.
II. Напыление.
Напыляемые материалы поставляются в виде проволоки, порошков (от 10 до 200 мк) (в виде порошков могут быть металлы, сплавы, композиционные сплавы, керамика) и каждый материал предназначен для получения тех или иных свойств:
Алюминий – для защиты черных металлов от коррозии;
Цинк – для защиты черных металлов от коррозии;
Молибден – для нанесения подслоя, а также для повышения жаростойкости;
Олово и его сплавы – лужение, как способ повышения кислотостойкости коррозионной стойкости. Бабитовые покрытия для наращивания вкладышей подшипников.
Медь и ее сплавы:
- Чистая медь для нанесения электропроводных и декоративных покрытий;
- Алюминиевая бронза с добавлениями повышает коррозионностойкость, стойкость к действию серной и соляной кислот;
- Фосфористая бронза – повышает износостойкость, применяют для упрочнения новых и восстановления изношенных частей валов и подшипников скольжения.
Никель и его сплавы: для защиты от эрозионного воздействия, повышение кислотостойкости, жаростойкости.
Углеродистая и низколегированная стали – для повышения износостойкости деталей машин, при восстановлении изношенных деталей.
Коррозионностойкая сталь – для повышения износостойкости, коррозионной стойкости, жаростойкости.
Серебро – для напыления электрических контактов и нанесения покрытия на оси перед напрессовкой деталей (толщина покрытия ~0,1 мм).
Режимы процесса напыления.
Для выполнения дюбого процесса металлизации существуют установленные режимы: только выполняя их, можно получить равномерное покрытие. Давление и расход газа (в зависимости от применяемого аппарата): давление ацетилена 0,6-1,2 ат., расход -600 – 2000 л/час;
Давление кислорода 2,5-5 ат., расход 1000-3000 л/час;
Давление воздуха 3-6 ат. Расход 10-30 м3/час.
Обычное расстояние от сопла до покрываемой поверхности составляет 50-400 мм, если оно равняется 50-80 мм, то такую металлизацию называют горячей, при этом снижаются потери распыляемого металла, частички попадают на поверхность металла в горячем состоянии.
Угол распыления обычно рекомендуют: для стали 300, цинка 25, Аl и Cu - 150. Для получения покрытия равномерной толщины желательно, чтобы толщина напыленного слоя за один проход не превышала 0,25 мм.
Виды напыления.
1. Газопламенное напыление – в зависимости от состояния напыленного материала может быть трех типов: напыление проволокой (рис. 5.25); прутком; порошком.
Проволока обычно диаметром не более 3 мм, для цветных сплавов - 5-7 мм. Применяемый газ ацетилен.
Рис. 5.25. Газопламенное напыление проволокой:
1 – сжатый воздух; 2 – ацетилено-кислородная горючая смесь;
3 - проволока; 4 – насадок; 5 – ядро ацетилено-кислородного пламени; 6 - оплавляющийся конец проволоки; 7 – факел пламени;
8 – воздушный поток; 9 - покрытие; 10 – поток частиц напыляемого материала; 11 – основной металл.
Дуговая металлизация – подаются две проволоки, между ними загорается дуга, проволоки плавятся и расплавленный металл выдувается воздухом (газом) (рис. 5.25). Сила тока ~280 А, температура дуги до 6100±200 К.
Рис. 5.26. Схема дугового напыления:
1 – насадок; 2 – место ввода напыляемого материала (проволки);
3- место подачи сжатого воздуха.
3. Плазменное напыление: между катодом и анодом возникает дуга, которая нагревает поступающий в сопло горелки газ, он затем истекает из сопла в виде плазменной струи (рис. 5.26). В качестве рабочего газа используют аргон или азот. Наплавленный материал подается в виде порошка.
Рис. 5.27. Схема плазменного напыления:
1 – плазмообразующий газ; 2 – место ввода напыляемого материала; 3 – источник питания; 4 – катод; 5 – анод.
4. Детонационное напыление: в камеру водоохлаждаемого ствола установки диаметром 254 мм подается кислород и ацетилен в строго определенных количествах (рис. 5.27). Затем через специальное отверстие в камере подается напыляемый порошок (карбид вольфрама, оксид алюминия. Полученную газовую смесь, в которой порошок находится во взвешенном состоянии, поджигают искрой. В результате взрыва смеси происходит выделение теплоты и образуется ударная волна, которая разогревает и рагоняет частицы порошка к поверхности изделия. Затем ствол продувается азотом для удаления продуктов сгорания. Процесс повторяется, он отрегулирован с частотой 3-4 цикла в сек. Скорость частиц составляет ~ 820 м/с.
Рис. 5.28. Схема детонационного напыления:
а) подача газов в камеру; б) подача напыляемого материала; в) подача электрической искры; г) продувка камеры.
1 – сопло для подачи кислорода; 2 – водоохлаждаемый ствол;
3 - камера сгорания; 4 – сопло для подачи ацетилена;
5 – основной материал; 6 – сопло для подачи в камеру сгорания напыляемого порошка; 7 – покрытие.
