- •Введение
- •1. Строение и свойства металлов
- •1.1. Классификация металлов
- •. Кристаллическое строение металлов
- •1.3. Методы исследования структуры металлов
- •1.4. Свойства материалов и способы из измерения
- •2.Основы производства черных и цветных металлов (Металлургическое производство)
- •2.1. Способы извлечения металлов из руд
- •2.2. Металлургическое топливо Металлургическое топливо используется для получения высоких температур в печах, а также для непосредственного участия в химических процессах восстановления металлов.
- •2.3. Огнеупорные материалы
- •2.4. Производство чугуна
- •2.4.1.Материалы, применяемые в доменном производстве
- •2.4.2. Подготовка руды к плавке
- •2.4.3. Устройство доменной печи
- •2.4.4. Доменный процесс
- •2.4.5. Продукты доменного производства
- •2.4.6. Интенсификация доменного плавки
- •2.5. Производство стали
- •2.5.1. Классификация сталей
- •2.5.2. Химические процессы сталеплавильного производства
- •2.5.3. Конвертерное производство стали
- •Технология плавки.
- •2.5.4. Раскисление стали
- •2.5.5. Производство стали в мартеновских печах
- •2.5.6. Производство сталей в электропечах
- •Плавка стали в индукционных печах.
- •2.5.7. Способы повышения качества стали
- •Вакуумная обработка стали в ковше.
- •2.5.8. Разливка стали
- •2.6. Производство цветных металлов
- •2.6.1. Производство меди
- •2.6.3. Производство титана
- •2.6.4. Производство магния
- •3. Литейное производство
- •3.1. Введение
- •3.2. Основы литейного производства (терминология)
- •3.3. Изготовление форм
- •3.4Дефекты отливок.
- •3.5. Печи для плавки металлов и сплавов
- •3.6. Подготовка расплава к заливке
- •. Технологическая схема производства отливок
- •. Производство отливок из чугуна
- •.Производство отливок из стали
- •. Производство отливок из алюминия
- •. Специальные методы литья
- •3.11.1. Литье в разовые формы
- •3.11.2. Литье в постоянные формы
- •Обработка металлов давлением
- •4.1. Введение
- •4.2. Теоретические основы обработки металлов давлением
- •4.3. Нагрев металла
- •4.4. Процессы обработки металлов давлением
- •4.4.1. Прокатка
- •1. Рабочая часть валка (бочка); 2. Шейка валка; 3. Трефы.
- •4.4.2. Волочение
- •4.4.3. Прессование
- •4.4.4. Свободная ковка
- •4.4.5. Штамповка
- •Основы сварочного производства
- •5.1. Введение
- •5.2. Физические основы процесса сварки и ее классификация
- •. Основные виды сварных соединений и швов
- •5.4. Свариваемость металла
- •5.5. Строение сварного шва
- •.Сварка плавлением
- •Электродуговая сварка. Сущность процесса
- •1. Электрод; 2. Основной металл.
- •Электрическая дуга и ее свойства
- •1. Электрод. 2. Основной металл. 3. Электроны. 4. Ионизация. 5. Катодное пятно. 6. Столб дуги. 7. Анодное пятно.
- •5.6.3. Источники питания сварочной дуги
- •5.6.4. Ручная дуговая сварка
- •Методы повышения производительности при ручной
- •5.6.5. Автоматическая сварка под слоем флюса
- •5.6.6. Полуавтоматическая сварка под слоем флюса
- •- Электрододержатель; 2 - гибкий шланговый провод; 3 - кассета;
- •5.6.7. Электрошлаковая сварка
- •5.6.8. Электросварка в среде защитных газов
- •5.6.9. Плазменная сварка
- •- Вольфрамовый электрод; 2 - втулка изоляционная; 3 - сопло;
- •5.6.10. Электронно-лучевая сварка
- •5.6.11. Газовая сварка металлов
- •1. Ядро пламени, 2. Восстановительная зона, 3. Факел пламени.
- •5.6.12. Газовая резка металлов
- •5.7. Сварка давлением
- •5.7.1. Индукционная сварка (высокочастотная)
- •5.7.2. Контактная сварка
- •– Детали; 2 - зажимные губки; 3 - место стыка; р-усилие сжатия.
- •5.7.3. Диффузионная сварка
- •5.7.4. Газопрессовая сварка
- •5.7.5. Холодная сварка
- •5.7.6. Ультразвукоывая сварка
- •5.7.7. Сварка трением
- •. Особенности сварки различных металлов и сплавов
- •5.8.1. Сварка углеродистых сталей
- •5.8.2. Сварка легированных сталей
- •5.8.3. Сварка чугуна
- •5.8.4. Особенности сварки цветных металлов и сплавов
- •5.9. Дефекты и контроль качества сварных швов
- •5.10. Сварка изделий из пластмасс
- •5.11. Наплавка
- •5.12. Напыление материалов
- •I. Подготовка поверхности.
- •II. Напыление.
- •III. Последующая обработка.
- •Пайка материалов
- •1, 2, 5, 6 – Малопрочные соединения, применяются редко;
- •I. По температуре плавления:
- •II. По основному компоненту:
- •I. Пайка паяльником.
- •II. Пайка электросопротивлением.
- •III. Индукционная пайка.
- •IV. Пайка в ванне.
- •Подготовка поверхности включает в себя
- •7. Получение неразъемных соединений склеиванием
- •I. Обработка поверхности изделий.
- •1. Подготовка поверхности включает в себя:
- •II. Обработка клеящего вещества:
- •III. Соединение склеиваемых деталей:
- •1. Сочленение и соединение склеиваемых деталей с использованием фиксирующих и поджимающих устройств;
- •Подготовка поверхности:
- •2. Предварительная обработка поверхности:
- •3. Окончательная обработка поверхности:
- •Неметаллические материалы
- •8.1. Полимерные материалы
- •8.2. Древесные материалы
- •8.3. Резина и резинотехнические изделия
- •Основы порошковой металлургии
- •Композиционные материалы
- •10.1. Введение
- •10.2. Общая характеристика композиционных материалов и их классификация
- •I. Дисперсноупрочненные компоненты и композиты, армированные частицами (рис. 10.2. А).
- •II. Волокнистые композицонные материалы (рис. 10.2, б).
- •III. Слоистые композиционные материалы (рис. 10.2, в).
- •10.3. Методы получения и свойства армирующих волокон
- •10.4. Способы получения композиционных материалов
- •I. Подготовка арматуры:
- •II. Приготовление связующего:
- •10.5. Композиционные материалы на металлической основе
- •10.6. Композиционные материалы на неметаллической основе
- •10.7. Слоистые композиционные материалы
- •Оглавление
. Кристаллическое строение металлов
Все металлы и их сплавы – тела кристаллические. Какими силами связаны атомы в кристаллической решетке?
Существуют четыре основных типа связи в твердых телах:
ковалентный тип связи (между атомами неметаллов Сl);
ионный тип связи ( между атомами металлов и неметаллов NaCl);
металлический тип связи (между атомами металлов)
остаточная связь парафин (Т пл. низкая, мягкий);
Рассмотрим металлический тип связи, благодаря которому металлы приобретают присущие им свойства.
Кристаллическое строение металлов характеризуется закономерным размещением атомов в пространстве с образованием кристаллической решетки.
Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узлах которой находятся положительные ионы, а внешние отрицательно заряженные электроны образуют так называемый электронный «газ» (рис.1.1).
Рис.1.1. Металлический тип связи.
1 –положительно заряженные ионы;
2 – отрицательно заряженые электроны.
Атомы в решетке связаны силами взаимного притяжения и отталкивания электрон - между положительно заряженными ионами и электронным «газом». Такая связь не является жесткой и направленной, поэтому атомы могут скользить друг относительно друга, разрушая сплошности материала, что и обеспечивает высокую пластичность металлов (рис.1.2). Наличием данного электронного «газа» объясняются такие свойства металлов как электропроводность , теплопроводность, пластичность.
Рис.1.2. Схема сдвига в решетке металла
при пластической деформации
Атомы (ионы) могут, располагаясь в узлах кристаллической решетки, образовывать правильные геометрические фигуры. Что такое кристаллическая решетка? Это воображаемая пространственная сетка, в узлах которой располагаются атомы, образующие металл. Металлы могут давать сравнительно небольшое число вариантов расположения атомов в пространстве (рис. 1.3). У металлов наиболее часто встречаются следующие типы решеток:
Рис.
1.3. Типы кристаллических решеток металлов.
а - кубическая объемно-центрированная (ОЦК)
(Мо, Fe, V, Na, Cr, Ta, K, Li, и др.)
б - кубическая гранецентрированная (ГЦК)
(Cu, Al, Pt, Fe, Erg, Au, и др.)
в - гексагональная плотноупакованная (ГПУ) (Mg, Be, Y, Co, и др.)
Размеры элементарной ячейки называются параметрами решетки, они обозначаются а, в, с и измеряются в ангстремах (1А=10-8 см). Из этих решеток (элементарных ячеек) строятся кристаллы металлов. Каждый кристалл состоит из большого количества мелких кристаллических решеток, в которых атомы расположены закономерно.
Однако, образовавшиеся реальные кристаллы не обладают строгой периодичностью в расположении атомов, они имеют те или иные несовершенства, т.н. дефекты кристаллического строения. Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве: точечные, линейные, поверхностные, объемные. К точечным дефектам относят вакансии (узлы в кристаллической решетке, свободной от атомов), межузельные атомы, примеси замещения.
У линейных дефектов длина на несколько порядков больше ширины. У поверхностных дефектов мала толщина, а ширина и длина больше ее на несколько порядков. Объемные дефекты (поры, трещины) имеют значительные размеры во всех трех направлениях.
