- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Учет стоимостных факторов при реализации сетевого графика
Стоимостные факторы при реализации сетевого графика учитываются путем определения зависимости "затраты-продолжительность" для каждой операции. При этом рассматриваются прямые затраты, а косвенные типа административных или управленческих расходов не принимаются во внимание.
Рисунок 37
Рисунок
38
Рисунок
39
Рисунок 40
Рисунок 41
Рисунок 42
На рис. 41 показана линейная зависимость стоимости операции от ее продолжительности. Точка (DB, СВ), где DB — продолжительность операции, а СВ — ее стоимость, соответствует нормальному режиму выполнения операции. Продолжительность операции можно уменьшить (сжать), увеличив интенсивность использования ресурсов, а следовательно, увеличив стоимость операции. Однако существует предел, называемый минимальной продолжительностью операции. За точкой, соответствующей этому пределу (точка максимально интенсивного режима), дальнейшее увеличение интенсивности использования ресурсов ведет лишь к увеличению затрат без сокращения продолжительности операции. Этот предел обозначен на рис. 41 точкой А с координатами (DA,СА).
Линейная зависимость "затраты-продолжительность" принимается из соображений удобства, так как ее можно определить для любой операции по двум точкам нормального и максимально интенсивного режимов, т.е. по точкам А и В.
Использование нелинейной зависимости "затраты-продолжительность" существенно усложняет вычисления. Поэтому иногда нелинейную зависимость можно аппроксимировать кусочно-линейной (рис. 42), когда операция разбивается на части, каждая из которых соответствует одному линейному отрезку. Следует отметить, что наклоны этих отрезков при переходе от точки нормального режима к точке максимально интенсивного режима возрастают. Если это условие не выполняется, то аппроксимация не имеет смысла.
Определив зависимость "затраты-продолжительность", для всех операций сети принимают нормальную продолжительность. Далее рассчитывается сумма затрат на все операции сети при этой продолжительности работ. На следующем этапе рассматривается возможность сокращения продолжительности работ. Этого можно достичь за счет уменьшения продолжительности какой-либо критической операции, только критические операции и следует подвергать анализу. Чтобы добиться сокращения продолжительности выполнения работ при минимально возможных затратах, необходимо в максимально допустимой степени сжать ту критическую операцию, у которой наклон кривой "затраты-продолжительность" наименьший. В результате сжатия критической операции получают новый календарный график, возможно, с новым критическим путем. Стоимость работ при новом календарном графике будет выше стоимости работ по предшествующему графику. На следующем этапе этот новый график вновь подвергается сжатию за счет следующей критической операции с минимальным наклоном кривой "затраты-продолжительность" при условии, что продолжительность этой операции не достигла минимального значения. Подобная процедура повторяется, пока все критические операции не будут находиться в режиме максимальной интенсивности. Полученный таким образом оптимальный календарный график соответствует минимуму прямых затрат.
