- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Расчет временных параметров сетевого графика
Основным временным параметром сетевого графика является продолжительность критического пути.
Расчет критического пути включает два этапа. Первый называется прямым проходом. Вычисления начинают с исходного события и продолжают до тех пор, пока не будет достигнуто завершающее событие. Для каждого события определяется одно число, представляющее ранний срок его наступления. На втором этапе, называемом обратным проходом, вычисления начинают с завершающего события и продолжают, пока не будет достигнуто исходное событие. Для каждого события вычисляется поздний срок его наступления.
Таблица 29 - Прямой проход.
Операции |
Наименование работы |
Непосредственно предшествующие операции |
Продолжительность, недели |
А, Б |
Разработка технической документации (ТД) на прибор и его электронную часть |
- |
А-3, Б-2 |
В, Г |
Разработка технологической документации на электрон. часть прибора и прибор |
А, Б |
В-2, Г-2 |
Д |
Передача ТД на прибор |
А |
3 |
Е |
Изготовление приборов |
В |
7 |
Ж |
Изготовление электронной части прибора |
Д,Г |
3 |
З, К |
Разработка ТД на эксплуатацию прибора и электронную часть |
Г, В |
3-5, К-2,
|
И |
Сборка и испытания прибора |
Е, Ж |
6 |
ti р.н — ранний срок начала всех операций, выходящих из события i.
Если i = 0, то t0 р.н = 0; t j р.н— ранний срок начала всех операций, входящих в j.
Тогда t
j
р.н
=
(ti
р.н
+t
ij)
для
всех
(i,
j),
где tij
—
продолжительность операции (i,
j);
t 1 р.н = t 0 р.н + t 0,1 = 0 + 2 = 2; t 2 р.н = t 0 р.н + t 0,2 = 0 + 3 = 3;
t
3
р.н
=
;
t
4
р.н
=
;
t
5
р.н
=
;
t
6
р.н
=
Прямой проход закончился, начинаем обратный:
ti п.о— поздний срок окончания всех операций, входящих в событие i.
Если i = п, где п — завершающее событие сети, то tп п.о= tп р.н и является отправной точкой обратного прохода;
ti п.о= ( tj п.о - t i,j ) для всех операций (i,j);
t6 п.о= t6 р.н=19, t5 п.о= t6 п.о - t5,6=19-6=13,
t4
п.о=
t3п.о=
t2
п.о=
t1п.о==
t3п.о
-
t1,3=6-2=4,
t0
п.о=
Используя результаты вычислений при прямом и обратном проходах, можно определить операции критического пути. Операция (i, j) принадлежит критическому пути, если она удовлетворяет условиям: ti р.н=ti п.о , tj р.н =tj п.о, tj р.н - ti р.н = tj п.о - ti п.о=tij.
Для рассматриваемого примера критический путь включает операции (0,2), (2,3), (3,4), (4,5), (5,6).
Операции связаны еще с двумя сроками:
tij п.н— поздний срок начала работы. Он является наиболее поздним (максимальным) из допустимых моментов начала данной работы, при котором еще возможно выполнение всех последующих работ в установленный срок:
tij п.н= tj п.о - tij;
tij р.о - ранний срок окончания работы. Он является наиболее ранним (минимальным) из возможных моментов окончания работы при заданной продолжительности работ:
tij р.о= t i р.н+ tij.
Различают два вида резервов времени: полный резерв (rп) и свободный резерв (rсв).
Полный резерв времени показывает, на сколько может быть увеличена сумма продолжительности всех работ относительно критического пути. Он представляет собой разность между максимальным отрезком времени, в течение которого может быть выполнена операция, и ее продолжительностью (tij) и определяется как
tij п.н - t i р.н.
Свободный резерв времени — максимальное время, на которое можно отсрочить начало или увеличить продолжительность работы при условии, что все события наступают в ранние сроки: r св ij= tj р.н - t i р.н - tij.
Результаты расчета критического пути и резервов времени некритических операций представлены в нижеследующей таблице. Следует отметить, что критические операции должны иметь нулевой полный резерв времени, при этом свободный резерв также должен быть равен нулю.
