- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
Требуется проложить путь (трубопровод, шоссе) между двумя пунктами А и В таким образом, чтобы суммарные затраты на его сооружение были минимальные.
Решение. Разделим расстояние между пунктами А и В на шаги (отрезки). На каждом шаге можем двигаться либо строго на восток (по оси X), либо строго на север (по оси У). Тогда путь от А в В представляет ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей. Затраты на сооружение каждого из отрезков известны в млн р.
Таблица 28 - Исходные данные задачи
У (север) В
|
13 |
|
9 |
|
9 |
|
10 |
|
11 |
|
12 |
|
12 |
|
13 |
|
14 |
|
8 |
|
14 |
|
9 |
|
14 |
|
13 |
|
15 |
|
10 |
|
10 |
|
8 |
|
12 |
|
11 |
|
16 |
|
10 |
|
10 |
|
13 |
|
12 |
|
9 |
|
12 |
|
14 |
|
13 |
|
10 |
|
14 |
|
А X (восток)
Разделим расстояние от А до В в восточном направлении на 4 части, в северном — на 3 части. Путь можно рассматривать как управляемую систему, перемещающуюся под влиянием управления из начального состояния А в конечное В. Состояние этой системы перед началом каждого шага будет характеризоваться двумя целочисленными координатами х и у. Для каждого из состояний системы (узловой точки) найдем условное оптимальное управление. Оно выбирается так, чтобы стоимость всех оставшихся шагов до конца процесса была минимальна. Процедуру условной оптимизации проводим в обратном направлении, т.е. от точки В к точке А. Найдем условную оптимизацию последнего шага:
Рисунок 30
В точку В можно попасть из В1 или В2. В узлах запишем стоимость пути. Стрелкой покажем минимальный путь. Рассмотрим предпоследний шаг.
Рисунок 31
Для точки В3 условное управление — по оси X, а для точки В5 — по оси У. Управление для точки В4 выбираем как min(13 + 10,14 + 14) = min(23,28) = 23, т.е. по оси У.
Рисунок 32
Получим
опт= (с, с, в, с, в, в, в),
где с — север, в —восток.
Минимальные затраты составляют
10 + 13 + 8 + 12 + 9 + 9 + 10 = 71 млн р.
Если решать задачу исходя из оптимальности на каждом этапе, то решение будет следующим:
=(с, в, в, с, в, с, в). Затраты составят 10 + 12 + 11 + 10 + 9 + 13 + 10 = 75 > 71.
Ответ. Прокладывать путь целесообразно по схеме: с, с, в, с, в, в, в, при этом затраты будут минимальные и составят 71 млн р.
